Algebra-Lineares Gleichungssystem-Einsetzverfahren (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Beispiel Nr: 21
$\begin{array}{l}
\text{Gegeben:} \\
a1 \cdot x +b1 \cdot y =c1\\
a2 \cdot x +b2 \cdot y =c2 \\
\\ \text{Gesucht:} \\\text{x und y}
\\ \\ \textbf{Gegeben:} \\
\\
2x -7y =-8\\
7x -1y = -9 \\
\\
\\ \\ \textbf{Rechnung:} \\\begin{array}{l|l}
\begin{array}{l}
I \qquad 2 x -7 y =-8\\
II \qquad 7 x -1 y = -9 \\
\text{I nach x auflösen}\\
2 x -7 y =-8 \\
2 x -7 y =-8 \qquad /+7 y\\
2 x =-8 +7 y \qquad /:2 \\
x =-4 +3\frac{1}{2} y \\
\text{I in II}\\
7 (-4 +3\frac{1}{2} y ) + -1 y = -9 \\
-28 +24\frac{1}{2} y -1 y = -9 \qquad / -\left(-28\right) \\
+24\frac{1}{2} y -1 y = -9 -\left(-28\right) \\
23\frac{1}{2} y = 19 \qquad /:23\frac{1}{2} \\
y = \frac{19}{23\frac{1}{2}} \\
y=\frac{38}{47} \\
x =-4 +3\frac{1}{2} y \\
x =-4 +3\frac{1}{2} \cdot \frac{38}{47} \\
x=-1\frac{8}{47} \\
L=\{-1\frac{8}{47}/\frac{38}{47}\}
\end{array} &
\begin{array}{l}
I \qquad 2 x -7 y =-8\\
II \qquad 7 x -1 y = -9 \\
\text{I nach y auflösen}\\
2 x -7 y =-8 \\
2 x -7 y =-8 \qquad /-2 x\\
-7 y =-8 -2x \qquad /:\left(-7\right) \\
y =1\frac{1}{7} +\frac{2}{7}x \\
\text{I in II}\\
7x + -1(1\frac{1}{7} +\frac{2}{7} x ) = -9 \\
-1\frac{1}{7} -\frac{2}{7} x -1 x = -9 \qquad / -\left(-1\frac{1}{7}\right) \\
-\frac{2}{7} x -1 x = -9 -\left(-1\frac{1}{7}\right) \\
6\frac{5}{7} x = -7\frac{6}{7} \qquad /:6\frac{5}{7} \\
x = \frac{-7\frac{6}{7}}{6\frac{5}{7}} \\
x=-1\frac{8}{47} \\
y =1\frac{1}{7} +\frac{2}{7} x \\
y =1\frac{1}{7} +\frac{2}{7} \cdot \left(-1\frac{8}{47}\right) \\
y=\frac{38}{47} \\
L=\{-1\frac{8}{47}/\frac{38}{47}\}
\end{array}
\end{array}
\end{array}$