Algebra-Gleichungen-Quadratische Gleichung
$ ax^{2}+bx+c=0 $
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Beispiel Nr: 22
$\begin{array}{l} \text{Gegeben:} ax^{2}+bx+c=0
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung} \\
\\ ax^{2}+bx+c=0 \\ \textbf{Gegeben:} \\
-\frac{1}{2}x^2+2x+5 =0
\\ \\ \textbf{Rechnung:} \\
\begin{array}{l|l|l}
\begin{array}{l}
\text{a-b-c Formel}\\ \hline
\\
-\frac{1}{2}x^{2}+2x+5 =0
\\
x_{1/2}=\displaystyle\frac{-2 \pm\sqrt{2^{2}-4\cdot \left(-\frac{1}{2}\right) \cdot 5}}{2\cdot\left(-\frac{1}{2}\right)}
\\
x_{1/2}=\displaystyle \frac{-2 \pm\sqrt{14}}{-1}
\\
x_{1/2}=\displaystyle \frac{-2 \pm3,74}{-1}
\\
x_{1}=\displaystyle \frac{-2 +3,74}{-1} \qquad x_{2}=\displaystyle \frac{-2 -3,74}{-1}
\\
x_{1}=-1,74 \qquad x_{2}=5,74
\end{array}&
\begin{array}{l}
\text{p-q Formel}\\ \hline
\\
-\frac{1}{2}x^{2}+2x+5 =0 \qquad /:-\frac{1}{2}
\\
x^{2}-4x-10 =0
\\
x_{1/2}=\displaystyle -\frac{-4}{2}\pm\sqrt{\left(\frac{\left(-4\right)}{2}\right)^2- \left(-10\right)}
\\
x_{1/2}=\displaystyle 2\pm\sqrt{14}
\\
x_{1/2}=\displaystyle 2\pm3,74
\\
x_{1}=5,74 \qquad x_{2}=-1,74
\end{array}\\ \end{array} \end{array}$