Algebra-Lineares Gleichungssystem-Determinantenverfahren (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Beispiel Nr: 23
$\begin{array}{l}
D_h=\begin{array}{|cc|}a1\ & b1 \\ a2&b2 \\ \end{array}=
a1 \cdot b2 -b1 \cdot a2 \\
D_x=\begin{array}{|cc|}c1\ & b1 \\ c2&b2 \\ \end{array}=
c1 \cdot b2 -b1 \cdot c2 \\
D_y=\begin{array}{|cc|}a1\ & c1 \\ a2&c2 \\ \end{array}=
a1 \cdot c2 -c1 \cdot a2\\
x=\frac{D_x}{D_h} \\
y=\frac{D_y}{D_h}
\\ \\ \textbf{Gegeben:} \\
\\
2 x +2 y =1\frac{7}{10}\\
3 x +6 y = 3 \\
\\
\\ \\ \textbf{Rechnung:} \\
D_h=\begin{array}{|cc|}2\ & 2 \\ 3&6 \\ \end{array}=
2 \cdot 6 -2 \cdot 3=6 \\
D_x=\begin{array}{|cc|}1\frac{7}{10}\ & 2 \\ 3&6 \\ \end{array}=
1\frac{7}{10} \cdot 6 -2 \cdot 3=4\frac{1}{5} \\
D_y=\begin{array}{|cc|}2\ & 1\frac{7}{10} \\ 3&3 \\ \end{array}=
2 \cdot 3 -1\frac{7}{10} \cdot 3=\frac{9}{10} \\
\
x=\frac{4\frac{1}{5}}{6} \\
x=\frac{7}{10} \\
y=\frac{\frac{9}{10}}{6} \\
y=\frac{3}{20} \\
L=\{\frac{7}{10}/\frac{3}{20}\}\\
\,
\end{array}$