Algebra-Lineare Algebra-Lineare Gleichungssysteme und Gauß-Algorithmus
     
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
            
       
 
        
     $n-Gleichungen$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
            
        
                Beispiel Nr: 25
            
        
           $\begin{array}{l}   \\
       \begin{array}
      \text{Gegeben:} \\
      \text{Lineares Gleichungssytem} \\
      a1 \cdot x_1 + b1\cdot  x_2 + c1\cdot  x_3 ....=d1 \\
      a2\cdot x_1 + b2\cdot  x_2 + c2\cdot  x_3 .....=d2\\
      a3\cdot x_1 + b3\cdot  x_2 + c3\cdot  x_3....=d3\\
      .....  \\
      \text{Gesucht: }x_1,x_2,x_3.... \\    \\
      \end{array}  
     \\ \textbf{Aufgabe:}\\ y\\ \textbf{Rechnung:}\\ \small \begin{array}{l} 4x_1+x_2+8x_3=2 \\ 
8x_1 -x_2+x_3=1 \\ 
3x_1-6x_2+2x_3=10 \\ 
\\ 
\end{array} \qquad 
 \small   \begin{array}{ccc|cc }
x_1 & x_2 & x_3 & &  \\ 
 \hline4  & 1  & 8  & 2  \\ 
8  & -1  & 1  & 1  \\ 
3  & -6  & 2  & 10  \\ 
\end{array} \\ \\ 
\small \begin{array}{l}\text{Zeile}2=\text{Zeile}2\text{-Zeile}1\cdot \frac{8}{4}\\z2s1=8-4\cdot \frac{8}{4}=0 \\ z2s2=-1-1\cdot \frac{8}{4}=-3 \\ z2s3=1-8\cdot \frac{8}{4}=-15 \\ z2s4=1-2\cdot \frac{8}{4}=-3 \\  \end{array}\qquad \small   \begin{array}{ccc|cc }
x_1 & x_2 & x_3 & &  \\ 
 \hline4  & 1  & 8  & 2  \\ 
0  & -3  & -15  & -3  \\ 
3  & -6  & 2  & 10  \\ 
\end{array} \\ \\ 
\small \begin{array}{l}\text{Zeile}3=\text{Zeile}3\text{-Zeile}1\cdot \frac{3}{4}\\z3s1=3-4\cdot \frac{3}{4}=0 \\ z3s2=-6-1\cdot \frac{3}{4}=-6\frac{3}{4} \\ z3s3=2-8\cdot \frac{3}{4}=-4 \\ z3s4=10-2\cdot \frac{3}{4}=8\frac{1}{2} \\  \end{array}\qquad \small   \begin{array}{ccc|cc }
x_1 & x_2 & x_3 & &  \\ 
 \hline4  & 1  & 8  & 2  \\ 
0  & -3  & -15  & -3  \\ 
0  & -6\frac{3}{4}  & -4  & 8\frac{1}{2}  \\ 
\end{array} \\ \\ 
\small \begin{array}{l}\text{Zeile}1=\text{Zeile}1\text{-Zeile}2\cdot \frac{1}{-3}\\z1s2=1-(-3)\cdot \frac{1}{-3}=0 \\ z1s3=8-(-15)\cdot \frac{1}{-3}=3 \\ z1s4=2-(-3)\cdot \frac{1}{-3}=1 \\  \end{array}\qquad \small   \begin{array}{ccc|cc }
x_1 & x_2 & x_3 & &  \\ 
 \hline4  & 0  & 3  & 1  \\ 
0  & -3  & -15  & -3  \\ 
0  & -6\frac{3}{4}  & -4  & 8\frac{1}{2}  \\ 
\end{array} \\ \\ 
\small \begin{array}{l}\text{Zeile}3=\text{Zeile}3\text{-Zeile}2\cdot \frac{-6\frac{3}{4}}{-3}\\z3s2=-6\frac{3}{4}-(-3)\cdot \frac{-6\frac{3}{4}}{-3}=0 \\ z3s3=-4-(-15)\cdot \frac{-6\frac{3}{4}}{-3}=29\frac{3}{4} \\ z3s4=8\frac{1}{2}-(-3)\cdot \frac{-6\frac{3}{4}}{-3}=15\frac{1}{4} \\  \end{array}\qquad \small   \begin{array}{ccc|cc }
x_1 & x_2 & x_3 & &  \\ 
 \hline4  & 0  & 3  & 1  \\ 
0  & -3  & -15  & -3  \\ 
0  & 0  & 29\frac{3}{4}  & 15\frac{1}{4}  \\ 
\end{array} \\ \\ 
\small \begin{array}{l}\text{Zeile}1=\text{Zeile}1\text{-Zeile}3\cdot \frac{3}{29\frac{3}{4}}\\z1s3=3-29\frac{3}{4}\cdot \frac{3}{29\frac{3}{4}}=0 \\ z1s4=1-15\frac{1}{4}\cdot \frac{3}{29\frac{3}{4}}=-\frac{64}{119} \\  \end{array}\qquad \small   \begin{array}{ccc|cc }
x_1 & x_2 & x_3 & &  \\ 
 \hline4  & 0  & 0  & -\frac{64}{119}  \\ 
0  & -3  & -15  & -3  \\ 
0  & 0  & 29\frac{3}{4}  & 15\frac{1}{4}  \\ 
\end{array} \\ \\ 
\small \begin{array}{l}\text{Zeile}2=\text{Zeile}2\text{-Zeile}3\cdot \frac{-15}{29\frac{3}{4}}\\z2s3=-15-29\frac{3}{4}\cdot \frac{-15}{29\frac{3}{4}}=0 \\ z2s4=-3-15\frac{1}{4}\cdot \frac{-15}{29\frac{3}{4}}=4\frac{82}{119} \\  \end{array}\qquad \small   \begin{array}{ccc|cc }
x_1 & x_2 & x_3 & &  \\ 
 \hline4  & 0  & 0  & -\frac{64}{119}  \\ 
0  & -3  & 0  & 4\frac{82}{119}  \\ 
0  & 0  & 29\frac{3}{4}  & 15\frac{1}{4}  \\ 
\end{array} \\ \\ 
x_1=\frac{-\frac{64}{119}}{4}=-\frac{16}{119}\\x_2=\frac{4\frac{82}{119}}{-3}=-1\frac{67}{119}\\x_3=\frac{15\frac{1}{4}}{29\frac{3}{4}}=\frac{61}{119}\\L=\{-\frac{16}{119}/-1\frac{67}{119}/\frac{61}{119}\}   \end{array}$