Algebra-Gleichungen-Quadratische Gleichung
$ ax^{2}+bx+c=0 $
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Beispiel Nr: 25
$\begin{array}{l} \text{Gegeben:} ax^{2}+bx+c=0
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung} \\
\\ ax^{2}+bx+c=0 \\ \textbf{Gegeben:} \\
-\frac{1}{3}x^2+2x+5 =0
\\ \\ \textbf{Rechnung:} \\
\begin{array}{l|l|l}
\begin{array}{l}
\text{a-b-c Formel}\\ \hline
\\
-\frac{1}{3}x^{2}+2x+5 =0
\\
x_{1/2}=\displaystyle\frac{-2 \pm\sqrt{2^{2}-4\cdot \left(-\frac{1}{3}\right) \cdot 5}}{2\cdot\left(-\frac{1}{3}\right)}
\\
x_{1/2}=\displaystyle \frac{-2 \pm\sqrt{10\frac{2}{3}}}{-\frac{2}{3}}
\\
x_{1/2}=\displaystyle \frac{-2 \pm3,27}{-\frac{2}{3}}
\\
x_{1}=\displaystyle \frac{-2 +3,27}{-\frac{2}{3}} \qquad x_{2}=\displaystyle \frac{-2 -3,27}{-\frac{2}{3}}
\\
x_{1}=-1,9 \qquad x_{2}=7,9
\end{array}&
\begin{array}{l}
\text{p-q Formel}\\ \hline
\\
-\frac{1}{3}x^{2}+2x+5 =0 \qquad /:-\frac{1}{3}
\\
x^{2}-6x-15 =0
\\
x_{1/2}=\displaystyle -\frac{-6}{2}\pm\sqrt{\left(\frac{\left(-6\right)}{2}\right)^2- \left(-15\right)}
\\
x_{1/2}=\displaystyle 3\pm\sqrt{24}
\\
x_{1/2}=\displaystyle 3\pm4,9
\\
x_{1}=7,9 \qquad x_{2}=-1,9
\end{array}\\ \end{array} \end{array}$