Algebra-Gleichungen-Quadratische Gleichung
$ ax^{2}+bx+c=0 $
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Beispiel Nr: 33
$\begin{array}{l} \text{Gegeben:} ax^{2}+bx+c=0
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung} \\
\\ ax^{2}+bx+c=0 \\ \textbf{Gegeben:} \\
-\frac{6}{25}x^2+1\frac{23}{25}x+2\frac{4}{25} =0
\\ \\ \textbf{Rechnung:} \\
\begin{array}{l|l|l}
\begin{array}{l}
\text{a-b-c Formel}\\ \hline
\\
-\frac{6}{25}x^{2}+1\frac{23}{25}x+2\frac{4}{25} =0
\\
x_{1/2}=\displaystyle\frac{-1\frac{23}{25} \pm\sqrt{\left(1\frac{23}{25}\right)^{2}-4\cdot \left(-\frac{6}{25}\right) \cdot 2\frac{4}{25}}}{2\cdot\left(-\frac{6}{25}\right)}
\\
x_{1/2}=\displaystyle \frac{-1\frac{23}{25} \pm\sqrt{5\frac{19}{25}}}{-\frac{12}{25}}
\\
x_{1/2}=\displaystyle \frac{-1\frac{23}{25} \pm2\frac{2}{5}}{-\frac{12}{25}}
\\
x_{1}=\displaystyle \frac{-1\frac{23}{25} +2\frac{2}{5}}{-\frac{12}{25}} \qquad x_{2}=\displaystyle \frac{-1\frac{23}{25} -2\frac{2}{5}}{-\frac{12}{25}}
\\
x_{1}=-1 \qquad x_{2}=9
\end{array}&
\begin{array}{l}
\text{p-q Formel}\\ \hline
\\
-\frac{6}{25}x^{2}+1\frac{23}{25}x+2\frac{4}{25} =0 \qquad /:-\frac{6}{25}
\\
x^{2}-8x-9 =0
\\
x_{1/2}=\displaystyle -\frac{-8}{2}\pm\sqrt{\left(\frac{\left(-8\right)}{2}\right)^2- \left(-9\right)}
\\
x_{1/2}=\displaystyle 4\pm\sqrt{25}
\\
x_{1/2}=\displaystyle 4\pm5
\\
x_{1}=9 \qquad x_{2}=-1
\end{array}\\ \end{array} \end{array}$