Algebra-Gleichungen-Quadratische Gleichung
$ ax^{2}+bx+c=0 $
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Beispiel Nr: 36
$\begin{array}{l} \text{Gegeben:} ax^{2}+bx+c=0
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung} \\
\\ ax^{2}+bx+c=0 \\ \textbf{Gegeben:} \\
\frac{20}{49}x^2+3\frac{33}{49}x+3\frac{13}{49} =0
\\ \\ \textbf{Rechnung:} \\
\begin{array}{l|l|l}
\begin{array}{l}
\text{a-b-c Formel}\\ \hline
\\
\frac{20}{49}x^{2}+3\frac{33}{49}x+3\frac{13}{49} =0
\\
x_{1/2}=\displaystyle\frac{-3\frac{33}{49} \pm\sqrt{\left(3\frac{33}{49}\right)^{2}-4\cdot \frac{20}{49} \cdot 3\frac{13}{49}}}{2\cdot\frac{20}{49}}
\\
x_{1/2}=\displaystyle \frac{-3\frac{33}{49} \pm\sqrt{8\frac{8}{49}}}{\frac{40}{49}}
\\
x_{1/2}=\displaystyle \frac{-3\frac{33}{49} \pm2\frac{6}{7}}{\frac{40}{49}}
\\
x_{1}=\displaystyle \frac{-3\frac{33}{49} +2\frac{6}{7}}{\frac{40}{49}} \qquad x_{2}=\displaystyle \frac{-3\frac{33}{49} -2\frac{6}{7}}{\frac{40}{49}}
\\
x_{1}=-1 \qquad x_{2}=-8
\end{array}&
\begin{array}{l}
\text{p-q Formel}\\ \hline
\\
\frac{20}{49}x^{2}+3\frac{33}{49}x+3\frac{13}{49} =0 \qquad /:\frac{20}{49}
\\
x^{2}+9x+8 =0
\\
x_{1/2}=\displaystyle -\frac{9}{2}\pm\sqrt{\left(\frac{9}{2}\right)^2- 8}
\\
x_{1/2}=\displaystyle -4\frac{1}{2}\pm\sqrt{12\frac{1}{4}}
\\
x_{1/2}=\displaystyle -4\frac{1}{2}\pm3\frac{1}{2}
\\
x_{1}=-1 \qquad x_{2}=-8
\end{array}\\ \end{array} \end{array}$