Algebra-Gleichungen-Quadratische Gleichung
$ ax^{2}+bx+c=0 $
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Beispiel Nr: 37
$\begin{array}{l} \text{Gegeben:} ax^{2}+bx+c=0
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung} \\
\\ ax^{2}+bx+c=0 \\ \textbf{Gegeben:} \\
-\frac{4}{9}x^2+\frac{4}{9}x+\frac{8}{9} =0
\\ \\ \textbf{Rechnung:} \\
\begin{array}{l|l|l}
\begin{array}{l}
\text{a-b-c Formel}\\ \hline
\\
-\frac{4}{9}x^{2}+\frac{4}{9}x+\frac{8}{9} =0
\\
x_{1/2}=\displaystyle\frac{-\frac{4}{9} \pm\sqrt{\left(\frac{4}{9}\right)^{2}-4\cdot \left(-\frac{4}{9}\right) \cdot \frac{8}{9}}}{2\cdot\left(-\frac{4}{9}\right)}
\\
x_{1/2}=\displaystyle \frac{-\frac{4}{9} \pm\sqrt{1\frac{7}{9}}}{-\frac{8}{9}}
\\
x_{1/2}=\displaystyle \frac{-\frac{4}{9} \pm1\frac{1}{3}}{-\frac{8}{9}}
\\
x_{1}=\displaystyle \frac{-\frac{4}{9} +1\frac{1}{3}}{-\frac{8}{9}} \qquad x_{2}=\displaystyle \frac{-\frac{4}{9} -1\frac{1}{3}}{-\frac{8}{9}}
\\
x_{1}=-1 \qquad x_{2}=2
\end{array}&
\begin{array}{l}
\text{p-q Formel}\\ \hline
\\
-\frac{4}{9}x^{2}+\frac{4}{9}x+\frac{8}{9} =0 \qquad /:-\frac{4}{9}
\\
x^{2}-1x-2 =0
\\
x_{1/2}=\displaystyle -\frac{-1}{2}\pm\sqrt{\left(\frac{\left(-1\right)}{2}\right)^2- \left(-2\right)}
\\
x_{1/2}=\displaystyle \frac{1}{2}\pm\sqrt{2\frac{1}{4}}
\\
x_{1/2}=\displaystyle \frac{1}{2}\pm1\frac{1}{2}
\\
x_{1}=2 \qquad x_{2}=-1
\end{array}\\ \end{array} \end{array}$