Algebra-Gleichungen-Quadratische Gleichung
$ ax^{2}+bx+c=0 $
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Beispiel Nr: 41
$\begin{array}{l} \text{Gegeben:} ax^{2}+bx+c=0
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung} \\
\\ ax^{2}+bx+c=0 \\ \textbf{Gegeben:} \\
\frac{5}{9}x^2-3\frac{1}{3}x =0
\\ \\ \textbf{Rechnung:} \\
\begin{array}{l|l|l|l}
\begin{array}{l}
\text{x-Ausklammern}\\ \hline
\frac{5}{9}x^{2}-3\frac{1}{3}x =0 \\
x(\frac{5}{9}x -3\frac{1}{3})=0 \\
\\ \frac{5}{9} x-3\frac{1}{3} =0 \qquad /+3\frac{1}{3} \\
\frac{5}{9} x= 3\frac{1}{3} \qquad /:\frac{5}{9} \\
x=\displaystyle\frac{3\frac{1}{3}}{\frac{5}{9}}\\
x_1=0\\
x_2=6
\end{array}&
\begin{array}{l}
\text{a-b-c Formel}\\ \hline
\\
\frac{5}{9}x^{2}-3\frac{1}{3}x+0 =0
\\
x_{1/2}=\displaystyle\frac{+3\frac{1}{3} \pm\sqrt{\left(-3\frac{1}{3}\right)^{2}-4\cdot \frac{5}{9} \cdot 0}}{2\cdot\frac{5}{9}}
\\
x_{1/2}=\displaystyle \frac{+3\frac{1}{3} \pm\sqrt{11\frac{1}{9}}}{1\frac{1}{9}}
\\
x_{1/2}=\displaystyle \frac{3\frac{1}{3} \pm3\frac{1}{3}}{1\frac{1}{9}}
\\
x_{1}=\displaystyle \frac{3\frac{1}{3} +3\frac{1}{3}}{1\frac{1}{9}} \qquad x_{2}=\displaystyle \frac{3\frac{1}{3} -3\frac{1}{3}}{1\frac{1}{9}}
\\
x_{1}=6 \qquad x_{2}=0
\end{array}&
\begin{array}{l}
\text{p-q Formel}\\ \hline
\\
\frac{5}{9}x^{2}-3\frac{1}{3}x+0 =0 \qquad /:\frac{5}{9}
\\
x^{2}-6x+0 =0
\\
x_{1/2}=\displaystyle -\frac{-6}{2}\pm\sqrt{\left(\frac{\left(-6\right)}{2}\right)^2- 0}
\\
x_{1/2}=\displaystyle 3\pm\sqrt{9}
\\
x_{1/2}=\displaystyle 3\pm3
\\
x_{1}=6 \qquad x_{2}=0
\end{array}\\ \end{array} \end{array}$