Algebra-Gleichungen-Quadratische Gleichung
 $   ax^{2}+bx+c=0  $ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
            
        
                Beispiel Nr: 41
            
        
           $\begin{array}{l}  \text{Gegeben:} ax^{2}+bx+c=0  
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung}    \\
     
    \\    ax^{2}+bx+c=0  \\ \textbf{Gegeben:} \\ 
       \frac{5}{9}x^2-3\frac{1}{3}x =0
    \\ \\ \textbf{Rechnung:} \\
 \begin{array}{l|l|l|l}
\begin{array}{l} 
 \text{x-Ausklammern}\\ \hline
      \frac{5}{9}x^{2}-3\frac{1}{3}x =0 \\
      x(\frac{5}{9}x -3\frac{1}{3})=0 \\
      \\ \frac{5}{9} x-3\frac{1}{3} =0 \qquad  /+3\frac{1}{3} \\
      \frac{5}{9} x= 3\frac{1}{3} \qquad /:\frac{5}{9} \\
      x=\displaystyle\frac{3\frac{1}{3}}{\frac{5}{9}}\\
      x_1=0\\
      x_2=6
    
 \end{array}&
\begin{array}{l} 
 \text{a-b-c Formel}\\ \hline
      \\
      \frac{5}{9}x^{2}-3\frac{1}{3}x+0 =0
      \\
      x_{1/2}=\displaystyle\frac{+3\frac{1}{3} \pm\sqrt{\left(-3\frac{1}{3}\right)^{2}-4\cdot \frac{5}{9} \cdot 0}}{2\cdot\frac{5}{9}}
      \\
      x_{1/2}=\displaystyle \frac{+3\frac{1}{3} \pm\sqrt{11\frac{1}{9}}}{1\frac{1}{9}}
      \\
      x_{1/2}=\displaystyle \frac{3\frac{1}{3} \pm3\frac{1}{3}}{1\frac{1}{9}}
      \\
      x_{1}=\displaystyle \frac{3\frac{1}{3} +3\frac{1}{3}}{1\frac{1}{9}}  \qquad  x_{2}=\displaystyle  \frac{3\frac{1}{3} -3\frac{1}{3}}{1\frac{1}{9}}
      \\
      x_{1}=6 \qquad x_{2}=0
    
 \end{array}&
\begin{array}{l} 
 \text{p-q Formel}\\ \hline
      \\
      \frac{5}{9}x^{2}-3\frac{1}{3}x+0 =0   \qquad /:\frac{5}{9}
      \\
      x^{2}-6x+0 =0
      \\
      x_{1/2}=\displaystyle -\frac{-6}{2}\pm\sqrt{\left(\frac{\left(-6\right)}{2}\right)^2- 0}
      \\
      x_{1/2}=\displaystyle 3\pm\sqrt{9}
      \\
      x_{1/2}=\displaystyle 3\pm3
      \\
      x_{1}=6 \qquad x_{2}=0
    
 \end{array}\\  \end{array}  \end{array}$