Algebra-Gleichungen-Quadratische Gleichung
$ ax^{2}+bx+c=0 $
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Beispiel Nr: 47
$\begin{array}{l} \text{Gegeben:} ax^{2}+bx+c=0
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung} \\
\\ ax^{2}+bx+c=0 \\ \textbf{Gegeben:} \\
1\frac{11}{25}x^2+10\frac{2}{25}x+8\frac{16}{25} =0
\\ \\ \textbf{Rechnung:} \\
\begin{array}{l|l|l}
\begin{array}{l}
\text{a-b-c Formel}\\ \hline
\\
1\frac{11}{25}x^{2}+10\frac{2}{25}x+8\frac{16}{25} =0
\\
x_{1/2}=\displaystyle\frac{-10\frac{2}{25} \pm\sqrt{\left(10\frac{2}{25}\right)^{2}-4\cdot 1\frac{11}{25} \cdot 8\frac{16}{25}}}{2\cdot1\frac{11}{25}}
\\
x_{1/2}=\displaystyle \frac{-10\frac{2}{25} \pm\sqrt{51\frac{21}{25}}}{2\frac{22}{25}}
\\
x_{1/2}=\displaystyle \frac{-10\frac{2}{25} \pm7\frac{1}{5}}{2\frac{22}{25}}
\\
x_{1}=\displaystyle \frac{-10\frac{2}{25} +7\frac{1}{5}}{2\frac{22}{25}} \qquad x_{2}=\displaystyle \frac{-10\frac{2}{25} -7\frac{1}{5}}{2\frac{22}{25}}
\\
x_{1}=-1 \qquad x_{2}=-6
\end{array}&
\begin{array}{l}
\text{p-q Formel}\\ \hline
\\
1\frac{11}{25}x^{2}+10\frac{2}{25}x+8\frac{16}{25} =0 \qquad /:1\frac{11}{25}
\\
x^{2}+7x+6 =0
\\
x_{1/2}=\displaystyle -\frac{7}{2}\pm\sqrt{\left(\frac{7}{2}\right)^2- 6}
\\
x_{1/2}=\displaystyle -3\frac{1}{2}\pm\sqrt{6\frac{1}{4}}
\\
x_{1/2}=\displaystyle -3\frac{1}{2}\pm2\frac{1}{2}
\\
x_{1}=-1 \qquad x_{2}=-6
\end{array}\\ \end{array} \end{array}$