-
<<
>>
G
B
I
$ A = \frac{r^{2} \cdot \pi \cdot \alpha }{ 360} $
$ r = \sqrt{\frac{A\cdot 360}{\alpha \cdot \pi }} $
$ \alpha = \frac{A\cdot 360}{r^{2} \cdot \pi } $
$ b = \frac{2\cdot r\cdot \pi \cdot \alpha }{ 360} $
$ r = \frac{b\cdot 360}{\alpha \cdot \pi \cdot 2} $
$ \alpha = \frac{b\cdot 360}{r\cdot \pi \cdot 2} $
Geometrie-Kreis-Kreissektor (Grad)
$A = \frac{r^{2} \cdot \pi \cdot \alpha }{ 360}$
1
2
3
4
5
6
7
8
$r = \sqrt{\frac{A\cdot 360}{\alpha \cdot \pi }}$
1
2
3
4
5
6
$\alpha = \frac{A\cdot 360}{r^{2} \cdot \pi }$
1
2
3
4
5
6
$b = \frac{2\cdot r\cdot \pi \cdot \alpha }{ 360}$
1
2
3
4
$r = \frac{b\cdot 360}{\alpha \cdot \pi \cdot 2}$
1
2
3
4
$\alpha = \frac{b\cdot 360}{r\cdot \pi \cdot 2}$
1
2
3
4
Beispiel Nr: 01
$\begin{array}{l}
\text{Gegeben:}\\\text{Kreiszahl} \qquad \pi \qquad [] \\
\text{Fläche} \qquad A \qquad [m^{2}] \\
\text{Radius} \qquad r \qquad [m] \\
\\ \text{Gesucht:} \\\text{Winkel} \qquad \alpha \qquad [^{\circ}] \\
\\ \alpha = \frac{A\cdot 360}{r^{2} \cdot \pi }\\ \textbf{Gegeben:} \\ \pi=3\frac{16}{113} \qquad A=5m^{2} \qquad r=6m \qquad \\ \\ \textbf{Rechnung:} \\
\alpha = \frac{A\cdot 360}{r^{2} \cdot \pi } \\
\pi=3\frac{16}{113}\\
A=5m^{2}\\
r=6m\\
\alpha = \frac{5m^{2}\cdot 360}{(6m)^{2} \cdot 3\frac{16}{113} }\\\\\alpha=15,9^{\circ}
\\\\ \small \begin{array}{|l|} \hline A=\\ \hline 5 m^2 \\ \hline 500 dm^2 \\ \hline 5\cdot 10^{4} cm^2 \\ \hline 5\cdot 10^{6} mm^2 \\ \hline \frac{1}{20} a \\ \hline 0,0005 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline r=\\ \hline 6 m \\ \hline 60 dm \\ \hline 600 cm \\ \hline 6\cdot 10^{3} mm \\ \hline 6\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline alpha=\\ \hline 15,9 ° \\ \hline 955 \text{'} \\ \hline 5,73\cdot 10^{4} \text{''} \\ \hline 17,7 gon \\ \hline \frac{5}{18} rad \\ \hline \end{array} \end{array}$