Geometrie-Stereometrie-Prisma

$V = G\cdot h$
1 2
$G = \frac{V}{h}$
1 2
$h = \frac{V}{G}$
1 2
$O = 2\cdot G +M $
1 2 3
$G = \frac{O-M}{2}$
1 2
$M = O- 2\cdot G $
1 2 3
Beispiel Nr: 02
$\begin{array}{l} \text{Gegeben:}\\\text{Körperhöhe} \qquad h \qquad [m] \\ \text{Volumen} \qquad V \qquad [m^{3}] \\ \\ \text{Gesucht:} \\\text{Grundfläche} \qquad G \qquad [m^{2}] \\ \\ G = \frac{V}{h}\\ \textbf{Gegeben:} \\ h=6m \qquad V=5m^{3} \qquad \\ \\ \textbf{Rechnung:} \\ G = \frac{V}{h} \\ h=6m\\ V=5m^{3}\\ G = \frac{5m^{3}}{6m}\\\\G=\frac{5}{6}m^{2} \\\\\\ \small \begin{array}{|l|} \hline h=\\ \hline 6 m \\ \hline 60 dm \\ \hline 600 cm \\ \hline 6\cdot 10^{3} mm \\ \hline 6\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline V=\\ \hline 5 m^3 \\ \hline 5\cdot 10^{3} dm^3 \\ \hline 5\cdot 10^{6} cm^3 \\ \hline 5\cdot 10^{9} mm^3 \\ \hline 5\cdot 10^{3} l \\ \hline 50 hl \\ \hline \end{array} \small \begin{array}{|l|} \hline G=\\ \hline \frac{5}{6} m^2 \\ \hline 83\frac{1}{3} dm^2 \\ \hline 8333\frac{1}{3} cm^2 \\ \hline 833333\frac{1}{3} mm^2 \\ \hline \frac{1}{120} a \\ \hline 8,33\cdot 10^{-5} ha \\ \hline \end{array} \end{array}$