- 
            
                    << 
    
                  >>  
    G         
                             B          
                
                 I         
                                                 
                                         
 
 $ a = \frac{b\cdot sin\alpha }{ sin\beta } $
                                      
                                          $ sin\alpha  = \frac{a\cdot sin\beta }{  b} $
Geometrie-Trigonometrie-Sinussatz
 $ \frac{a}{ sin\alpha} = \frac{b}{ sin\beta }= \frac{c}{ sin\gamma }$ 
 $a = \frac{b\cdot sin\alpha }{ sin\beta }$ 
1 
2 
3 
4 
5 
6 
7 
 $sin\alpha  = \frac{a\cdot sin\beta }{  b}$ 
1 
2 
3 
4 
5 
            
        
                Beispiel Nr: 03
            
        
           $\begin{array}{l} 
      \text{Gegeben:}\\\text{Länge der Seite} \qquad b \qquad [m] \\
      \text{Länge der Seite} \qquad a \qquad [m] \\
      \text{Winkel} \qquad \beta \qquad [^{\circ}] \\
      \\ \text{Gesucht:} \\\text{Winkel} \qquad \alpha \qquad [^{\circ}] \\
     \\ sin\alpha  = \frac{a\cdot sin\beta }{  b}\\ \textbf{Gegeben:} \\ b=3m \qquad a=3m \qquad \beta=60^{\circ} \qquad \\ \\ \textbf{Rechnung:} \\
      sin\alpha  = \frac{a\cdot sin\beta }{  b} \\
      b=3m\\
      a=3m\\
      \beta=60^{\circ}\\
      sin\alpha  = \frac{3m\cdot sin60^{\circ} }{3m}\\
	  \\ 
	  	  0<\alpha<90° \qquad \alpha_1=60^{\circ} \\ 
	  90°<\alpha<180° \qquad \alpha_2=180° - 60^{\circ} \\
    \alpha_2=120 	  \\\\\\ \small \begin{array}{|l|} \hline b=\\  \hline 3 m  \\  \hline 30 dm  \\  \hline 300 cm  \\  \hline 3\cdot 10^{3} mm  \\  \hline 3\cdot 10^{6} \mu m  \\ \hline \end{array} \small \begin{array}{|l|} \hline a=\\  \hline 3 m  \\  \hline 30 dm  \\  \hline 300 cm  \\  \hline 3\cdot 10^{3} mm  \\  \hline 3\cdot 10^{6} \mu m  \\ \hline \end{array} \small \begin{array}{|l|} \hline beta=\\  \hline 60 °  \\  \hline 3,6\cdot 10^{3} \text{'}  \\  \hline 2,16\cdot 10^{5} \text{''}  \\  \hline 66\frac{2}{3} gon  \\  \hline 1,05 rad  \\ \hline \end{array} \small \begin{array}{|l|} \hline alpha=\\  \hline 60 °  \\  \hline 3,6\cdot 10^{3} \text{'}  \\  \hline 2,16\cdot 10^{5} \text{''}  \\  \hline 66\frac{2}{3} gon  \\  \hline 1,05 rad  \\ \hline \end{array}  \end{array}$