Algebra-Terme-Binomische Formel

$(a + b)^{2} $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
$ (a - b)^{2}$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
$(a + b)\cdot (a - b)$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
$(ax+b)^3$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
$(ax+b)^4$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Beispiel Nr: 04
$\begin{array}{l} (ax+ b)\cdot (ax - b) = a^{2}x^{2} - b^{2} \\ (a + b)\cdot (a - b)\\ \textbf{Gegeben:} \\ (1\frac{1}{4}x + \frac{4}{5})(1\frac{1}{4}x - \frac{4}{5})\\ \\ \textbf{Rechnung:} \\\text{3. Binomische Formel} \\(1\frac{1}{4}x+\frac{4}{5})(1\frac{1}{4}x-\frac{4}{5})=1\frac{1}{4}^{2}x^{2}-\frac{4}{5}^{2} \\(1\frac{1}{4}x+\frac{4}{5})(1\frac{1}{4} x-\frac{4}{5})= 1\frac{9}{16}x^2-\frac{16}{25} \end{array}$