Algebra-Terme-Binomische Formel
$(a + b)^{2} $
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
$ (a - b)^{2}$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
$(a + b)\cdot (a - b)$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
$(ax+b)^3$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
$(ax+b)^4$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Beispiel Nr: 04
$\begin{array}{l} (ax+ b)\cdot (ax - b) = a^{2}x^{2} - b^{2} \\ (a + b)\cdot (a - b)\\ \textbf{Gegeben:} \\ (1\frac{1}{4}x + \frac{4}{5})(1\frac{1}{4}x - \frac{4}{5})\\ \\ \textbf{Rechnung:} \\\text{3. Binomische Formel}
\\(1\frac{1}{4}x+\frac{4}{5})(1\frac{1}{4}x-\frac{4}{5})=1\frac{1}{4}^{2}x^{2}-\frac{4}{5}^{2}
\\(1\frac{1}{4}x+\frac{4}{5})(1\frac{1}{4} x-\frac{4}{5})= 1\frac{9}{16}x^2-\frac{16}{25}
\end{array}$