Geometrie-Viereck-Drachen

$A = \frac{1}{2}\cdot e\cdot f$
1 2 3 4 5 6 7 8 9 10 11 12
$e = \frac{2\cdot A}{ f}$
1 2 3 4 5 6 7 8 9 10 11 12
$f = \frac{2\cdot A}{ e}$
1 2 3 4 5 6 7 8 9 10 11 12
Beispiel Nr: 10
$\begin{array}{l} \text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\ \text{Diagonale e} \qquad e \qquad [m] \\ \\ \text{Gesucht:} \\\text{Diagonale f} \qquad f \qquad [m] \\ \\ f = \frac{2\cdot A}{ e}\\ \textbf{Gegeben:} \\ A=1\frac{1}{2}m^{2} \qquad e=\frac{1}{5}m \qquad \\ \\ \textbf{Rechnung:} \\ f = \frac{2\cdot A}{ e} \\ A=1\frac{1}{2}m^{2}\\ e=\frac{1}{5}m\\ f = \frac{2\cdot 1\frac{1}{2}m^{2}}{ \frac{1}{5}m}\\\\f=15m \\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline 1\frac{1}{2} m^2 \\ \hline 150 dm^2 \\ \hline 1,5\cdot 10^{4} cm^2 \\ \hline 1,5\cdot 10^{6} mm^2 \\ \hline 0,015 a \\ \hline 0,00015 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline e=\\ \hline \frac{1}{5} m \\ \hline 2 dm \\ \hline 20 cm \\ \hline 200 mm \\ \hline 2\cdot 10^{5} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline f=\\ \hline 15 m \\ \hline 150 dm \\ \hline 1,5\cdot 10^{3} cm \\ \hline 1,5\cdot 10^{4} mm \\ \hline 1,5\cdot 10^{7} \mu m \\ \hline \end{array} \end{array}$