Algebra-Terme-Binomische Formel

$(a + b)^{2} $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
$ (a - b)^{2}$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
$(a + b)\cdot (a - b)$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
$(ax+b)^3$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
$(ax+b)^4$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Beispiel Nr: 11
$\begin{array}{l} (ax+b)^4 =a^4\cdot x^4 +4a^3x^3b +4a^2x^2b^2 +4axb^3 +b^4 \\ (ax+b)^4\\ \textbf{Gegeben:} \\ (1\frac{1}{3}x + 1\frac{1}{4})^{4}\\ \\ \textbf{Rechnung:} \\ \\(1\frac{1}{3}x+1\frac{1}{4})^{4}=\left(1\frac{1}{3}\right)^{4}x^{4}+4 \cdot \left(1\frac{1}{3}\right)^3\cdot x^3\cdot 1\frac{1}{4}+6 \cdot \left(1\frac{1}{3}\right)^2\cdot x^2\cdot \left(1\frac{1}{4}\right)^2+4\cdot 1\frac{1}{3}\cdot x\cdot \left(1\frac{1}{4}\right)^3+\left(1\frac{1}{4}\right)^{4} \\(1\frac{1}{3}x+1\frac{1}{4})^{4}=3\frac{13}{81}x^4+11\frac{23}{27}x^3+16\frac{2}{3}x^2+10\frac{5}{12}x+2,44 \end{array}$