Algebra-Terme-Binomische Formel
$(a + b)^{2} $
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
$ (a - b)^{2}$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
$(a + b)\cdot (a - b)$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
$(ax+b)^3$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
$(ax+b)^4$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Beispiel Nr: 15
$\begin{array}{l} (ax+b)^4 =a^4\cdot x^4 +4a^3x^3b +4a^2x^2b^2 +4axb^3 +b^4 \\ (ax+b)^4\\ \textbf{Gegeben:} \\ (3x + 1\frac{2}{3})^{4}\\ \\ \textbf{Rechnung:} \\
\\(3x+1\frac{2}{3})^{4}=3^{4}x^{4}+4 \cdot 3^3\cdot x^3\cdot 1\frac{2}{3}+6 \cdot 3^2\cdot x^2\cdot \left(1\frac{2}{3}\right)^2+4\cdot 3\cdot x\cdot \left(1\frac{2}{3}\right)^3+\left(1\frac{2}{3}\right)^{4}
\\(3x+1\frac{2}{3})^{4}=81x^4+180x^3+150x^2+55\frac{5}{9}x+7\frac{58}{81}
\end{array}$