Geometrie-Trigonometrie-Kongruenzsätze - Berechnungen am Dreieck
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
Beispiel Nr: 43
$\begin{array}{l}
\text{Gegeben:}\\
\text{Seite-Seite-Seite (SSS): }a-b-c \\
\text{Seite-Winkel-Seite (SWS): }\\
a-b-\gamma , a-c-\beta , b-c-\alpha \\
\text{Seite-Seite-Winkel(SsW): }\\
a-b-\alpha ,a-b-\beta , a-c-\alpha, a-c-\gamma, \\
b-c-\beta, b-c-\gamma \\
\text{Winkel-Winkel-Seite (WWS,WSW): }\\
c-\beta-\gamma,a-\alpha-\beta ,a-\alpha-\gamma,\\
a-\beta-\gamma,b-\alpha-\beta ,b-\alpha-\gamma,\\
b-\beta-\gamma,c-\alpha-\beta ,c-\alpha-\gamma \\
\text{Gesucht:} \\
\text{- alle Winkel und alle Seiten} \\
\text{- Fläche } \\
\text{- Umfang} \\
\text{- Höhen,Seitenhalbierende,Winkelhalbierende} \\
\text{- In- und Umkreisradius} \\
\text{Eingabe:} \\
\text{Nur drei Eingaben können ungleich Null sein.} \\
\text{Ausgabe der Grafik nur im PDF-Format.}\\
\\ \\ \textbf{Gegeben:} \\ b=4 \qquad c=3\frac{1}{2} \qquad \beta=40 \qquad \\ \\ \textbf{Rechnung:} \\\text{Seite-Seite-Winkel}\\
b=4\quad c=3\frac{1}{2}\quad \beta=40^\circ\\
\\
\text{Sinus-Satz: } \displaystyle \frac{b}{\sin\beta}=\frac{c}{\sin\gamma } \\
\displaystyle \frac{b}{\sin\beta}=\frac{c}{\sin\gamma } \qquad / \cdot \sin\beta \qquad / \cdot \sin\gamma \\
b\cdot \sin\gamma=c\cdot \sin \beta \qquad /:b \\
\sin \gamma =\displaystyle\frac{c\cdot \sin\beta }{b } \\
\sin \gamma=\displaystyle\frac{3\frac{1}{2}\cdot \sin40^\circ }{4 } \\
\sin \gamma =0,562 \\
\gamma=\arcsin(0,562) \\
\gamma=34,2^\circ
\\
\text{Winkelsumme:} \alpha + \beta + \gamma =180^\circ\\
\alpha + \beta + \gamma =180 \qquad /-\alpha \qquad /-\gamma \\
\alpha =180^\circ -\beta - \gamma \\
\alpha =180^\circ -40^\circ - 34,2^\circ \\
\alpha =106^\circ
\\
\text{Kosinus-Satz:} a^2=b^2+c^2-2\cdot b \cdot c \cdot \cos\alpha \\
a^2=b^2+c^2-2\cdot b \cdot c \cdot \cos\alpha \\
a=\sqrt{b^2+c^2-2\cdot b \cdot c \cdot \cos\alpha} \\
a=\sqrt{4^2+3\frac{1}{2}^2-2\cdot 4 \cdot 3\frac{1}{2} \cdot \cos106^\circ} \\
a=5,99
\\
\text{Umfang: } U=a+b+c \\
U=5,99+4+3\frac{1}{2} \\
U=13,5
\\
\text{Höhe: } h_a \\
\sin\beta= \displaystyle \frac{h_a}{c} \\
\sin\beta= \displaystyle \frac{h_a}{c} \quad /\cdot c\\
h_a =c \cdot \sin\beta \\
h_a =3\frac{1}{2} \cdot \sin40^\circ \\
h_a=2,25
\\
\text{Flaeche: } \quad A = \frac{1}{2}\cdot a \cdot h_a \\
A = \frac{1}{2}\cdot 5,99 \cdot 2,25 \\
A=6,74
\\
\text{Höhe: } h_b \\
\sin\gamma= \displaystyle \frac{h_b}{a} \\
\sin\gamma= \displaystyle \frac{h_b}{a} \quad /\cdot a\\
h_b =a \cdot \sin\gamma \\
h_b =5,99 \cdot \sin34,2^\circ \\
h_b=3,37
\\
\text{Höhe: } h_c \\
\sin\alpha= \displaystyle \frac{h_c}{b} \\
\sin\alpha= \displaystyle \frac{h_c}{b} \quad / \cdot b\\
h_c=b \cdot \sin\alpha \\
h_c=4 \cdot \sin106^\circ \\
h_c=3,85
\\
\text{Winkelhalbierende: }\alpha \\
\delta=180-\beta-\frac{\alpha}{2} \\
\text{Sinus-Satz:} \displaystyle \frac{wha}{\sin\beta}=\frac{c}{\sin\delta } \\
\displaystyle \frac{wha}{\sin \beta}=\frac{c}{\sin\delta }\qquad /\cdot \sin\beta \\
wha=\displaystyle\frac{c \cdot \sin\beta}{ \sin\delta } \\
wha =\displaystyle\frac{3\frac{1}{2}\cdot \sin40 }{ \sin87,1} \\
wha=2,25
\\
\text{Winkelhalbierende: }\beta \\
\delta=180-\frac{\beta}{2}-\gamma \\
\text{Sinus-Satz:} \displaystyle \frac{whb}{\sin\gamma}=\frac{a}{\sin\delta } \\
\displaystyle \frac{whb}{\sin \gamma}=\frac{a}{\sin\delta }\qquad /\cdot \sin\gamma \\
whb=\displaystyle\frac{a \cdot \sin\gamma}{ \sin\delta } \\
whb =\displaystyle\frac{5,99\cdot \sin34,2 }{ \sin126} \\
whb=4,15
\\
\text{Winkelhalbierende: }\gamma \\
\delta=180-\alpha-\frac{\gamma}{2} \\
\text{Sinus-Satz:} \displaystyle \frac{whc}{\sin\alpha}=\frac{b}{\sin\delta } \\
\displaystyle \frac{whc}{\sin \alpha}=\frac{b}{\sin\delta }\qquad /\cdot \sin\alpha \\
whc=\displaystyle\frac{b \cdot \sin\alpha}{ \sin\delta } \\
whc =\displaystyle\frac{4\cdot \sin106 }{ \sin87,1} \\
whc=5,77
\\
\text{Seitenhalbierende: } \\ s_a=\frac{1}{2}\sqrt{2(b^2+c^2)-a^2} \\
s_a=\frac{1}{2}\sqrt{2(4^2+3\frac{1}{2}^2)-5,99^2} \\
s_a=2,27
\\
\text{Seitenhalbierende: } s_b=\frac{1}{2}\sqrt{2(a^2+c^2)-b^2}\\
s_b=\frac{1}{2}\sqrt{2(5,99^2+3\frac{1}{2}^2)-4^2}\\
s_b=4,48
\\
\text{Seitenhalbierende: } s_c=\frac{1}{2}\sqrt{2(a^2+b^2)-c^2}\\
s_c=\frac{1}{2}\sqrt{2(5,99^2+4^2)-3\frac{1}{2}^2}\\
s_c=4,68
\\
\text{Umkreisradius: } 2\cdot r_u= \displaystyle \frac{a}{\sin\alpha} \\
r_u =\displaystyle\frac{a}{2\cdot\sin\alpha} \\
r_u =\displaystyle\frac{5,99}{2\cdot\sin106^\circ} \\
r_u=3,11
\\
\text{Inkreisradius: }r_i= \displaystyle \frac{2 \cdot A}{U} \\
r_i= \displaystyle \frac{2 \cdot 6,74}{13,5} \\
r_i=0,999
\\ \end{array}$