Geometrie-Dreieck-Kongruenzsätze
1
2
Beispiel Nr: 19
$\begin{array}{l}
\documentclass[a4paper]{article}
\usepackage{amssymb}
\usepackage{fontspec}
\usepackage{xunicode}
\usepackage{xltxtra}
\usepackage{array}
\usepackage{amsmath}
\usepackage{geometry}
\usepackage{pst-eucl}
\usepackage{pstricks}
\usepackage{pst-plot}
\usepackage{pst-tree}
\usepackage{graphicx}
\geometry{verbose,letterpaper,tmargin=2cm,bmargin=2cm,lmargin=2cm,rmargin=2.5cm}
\definecolor{hellgrau}{rgb}{0.95,0.95,0.95}
\usepackage{mathpazo}
\usepackage{epic,eepic}
\newcounter{nr0}
\pagenumbering{arabic}
\setcounter{page}{1}
\usepackage{fancyhdr}
\pagestyle{fancy}
%\fancyhf{\leftmark}
\renewcommand{\sectionmark}[1]{\markboth{#1}{}}
\renewcommand{\subsectionmark}[1]{\markright{#1}}
\fancyhead[L]{\leftmark}
\fancyhead[R]{\rightmark}
\renewcommand{\headrulewidth}{0.5pt}
\fancyfoot[L]{www.fersch.de}
\fancyfoot[C]{\thepage}
\renewcommand{\footrulewidth}{0.5pt}
\begin{document}
\parindent0em
\text{Seite-Seite-Seite }\\
a=4\quad b=5\quad c=3\\
\text{Pythagoras: } b^2=a^2+c^2 \\
b=\sqrt{a^2+c^2} \\
b=\sqrt{4^2+3^2}\\
b=5
\text{ Rechtwinkliges Dreieck }\\
\text{Kathete: } \quad a=4\quad\text{Hypothenuse: }\quad b=5\quad \text{Kathete: } \quad c=3\quad \beta=90^\circ\\
\\
\text{Sinus: }\quad \sin\alpha= \displaystyle \frac{a}{b} \\
\sin\alpha= \displaystyle \frac{4}{5} \\
\alpha=53,1
\\
\text{Winkelsumme: } \alpha + \beta + \gamma =180^\circ\\
\alpha + \beta + \gamma =180 \qquad /-\alpha \qquad /-\beta \\
\gamma =180^\circ -\alpha -\beta \\
\gamma =180^\circ -53,1^\circ - 90^\circ \\
\gamma =36,9^\circ
\\
\text{Umfang: } U=a+b+c \\
U=4+5+3 \\
U=12
\\
\text{Höhe: } h_a \\
\sin\beta= \displaystyle \frac{h_a}{c} \\
\sin\beta= \displaystyle \frac{h_a}{c} \quad /\cdot c\\
h_a =c \cdot \sin\beta \\
h_a =3 \cdot \sin90^\circ \\
h_a=3
\\
\text{Flaeche: } \quad A = \frac{1}{2}\cdot a \cdot h_a \\
A = \frac{1}{2}\cdot 4 \cdot 3 \\
A=6
\\
\text{Höhe: } h_b \\
\sin\gamma= \displaystyle \frac{h_b}{a} \\
\sin\gamma= \displaystyle \frac{h_b}{a} \quad /\cdot a\\
h_b =a \cdot \sin\gamma \\
h_b =4 \cdot \sin36,9^\circ \\
h_b=2\frac{2}{5}
\\
\text{Höhe: } h_c \\
\sin\alpha= \displaystyle \frac{h_c}{b} \\
\sin\alpha= \displaystyle \frac{h_c}{b} \quad / \cdot b\\
h_c=b \cdot \sin\alpha \\
h_c=5 \cdot \sin53,1^\circ \\
h_c=4
\\
\text{Winkelhalbierende: }\alpha \\
\delta=180-\beta-\frac{\alpha}{2} \\
\text{Sinus-Satz:} \displaystyle \frac{wha}{\sin\beta}=\frac{c}{\sin\delta } \\
\displaystyle \frac{wha}{\sin \beta}=\frac{c}{\sin\delta }\qquad /\cdot \sin\beta \\
wha=\displaystyle\frac{c \cdot \sin\beta}{ \sin\delta } \\
wha =\displaystyle\frac{3\cdot \sin90 }{ \sin63,4} \\
wha=3,35
\\
\text{Winkelhalbierende: }\beta \\
\delta=180-\frac{\beta}{2}-\gamma \\
\text{Sinus-Satz:} \displaystyle \frac{whb}{\sin\gamma}=\frac{a}{\sin\delta } \\
\displaystyle \frac{whb}{\sin \gamma}=\frac{a}{\sin\delta }\qquad /\cdot \sin\gamma \\
whb=\displaystyle\frac{a \cdot \sin\gamma}{ \sin\delta } \\
whb =\displaystyle\frac{4\cdot \sin36,9 }{ \sin98,1} \\
whb=2,42
\\
\text{Winkelhalbierende: }\gamma \\
\delta=180-\alpha-\frac{\gamma}{2} \\
\text{Sinus-Satz:} \displaystyle \frac{whc}{\sin\alpha}=\frac{b}{\sin\delta } \\
\displaystyle \frac{whc}{\sin \alpha}=\frac{b}{\sin\delta }\qquad /\cdot \sin\alpha \\
whc=\displaystyle\frac{b \cdot \sin\alpha}{ \sin\delta } \\
whc =\displaystyle\frac{5\cdot \sin53,1 }{ \sin63,4} \\
whc=3,58
\\
\text{Seitenhalbierende: } \\ s_a=\frac{1}{2}\sqrt{2(b^2+c^2)-a^2} \\
s_a=\frac{1}{2}\sqrt{2(5^2+3^2)-4^2} \\
s_a=3,61
\\
\text{Seitenhalbierende: } s_b=\frac{1}{2}\sqrt{2(a^2+c^2)-b^2}\\
s_b=\frac{1}{2}\sqrt{2(4^2+3^2)-5^2}\\
s_b=2\frac{1}{2}
\\
\text{Seitenhalbierende: } s_c=\frac{1}{2}\sqrt{2(a^2+b^2)-c^2}\\
s_c=\frac{1}{2}\sqrt{2(4^2+5^2)-3^2}\\
s_c=3,77
\\
\text{Umkreisradius: } 2\cdot r_u= \displaystyle \frac{a}{\sin\alpha} \\
r_u =\displaystyle\frac{a}{2\cdot\sin\alpha} \\
r_u =\displaystyle\frac{4}{2\cdot\sin53,1^\circ} \\
r_u=2\frac{1}{2}
\\
\text{Inkreisradius: }r_i= \displaystyle \frac{2 \cdot A}{U} \\
r_i= \displaystyle \frac{2 \cdot 6}{12} \\
r_i=1
\\\\\psset{xunit=1.00cm,yunit=1.00cm}
\begin{pspicture}*(-2,-2)(5.00,6.00)
\pstTriangle[PointSymbol=none](0.00,0.00){A}(3.00,0.00){B}(3.00,4.00){C} \pstMarkAngle[linecolor=cyan]{B}{A}{C}{ \alpha }\pstMarkAngle[linecolor=cyan]{C}{B}{A}{ \beta }\pstMarkAngle[linecolor=cyan]{A}{C}{B}{ \gamma
}\pstMiddleAB[PointSymbol=none]{A}{C}{b}\pstMiddleAB[PointSymbol=none]{C}{B}{a}\pstMiddleAB[PointSymbol=none,PosAngle=-100]{A}{B}{c}
\end{pspicture} \\
\text{Seitenhalbierende-Schwerpunkt} \\\psset{xunit=1.00cm,yunit=1.00cm}
\begin{pspicture}*(-2,-2)(5.00,6.00)
\pstTriangle[PointSymbol=none](0.00,0.00){A}(3.00,0.00){B}(3.00,4.00){C} \psset{PointSymbol=none}
{
\psset{linestyle=none, PointName=none}
\pstMediatorAB{A}{B}{K}{KP}
\pstMediatorAB[PosAngleA=-40]{C}{A}{J}{JP}
\pstMediatorAB[PosAngleA=75]{B}{C}{I}{IP}
}
\psset{linecolor=magenta}\ncline{A}{I}\ncline{C}{K}\ncline{B}{J}
\pstMiddleAB[PointSymbol=none,PosAngle=-10]{A}{I}{s_a}
\pstMiddleAB[PointSymbol=none,PosAngle=-10]{C}{K}{s_c}
\pstMiddleAB[PointSymbol=none,PosAngle=-10]{B}{J}{s_b}
\pstCGravABC[PointSymbol=square, PosAngle=5]{A}{B}{C}{M}
\end{pspicture} \\ \text{Mittelsenkrechte - Umkreis} \\ \psset{xunit=1.00cm,yunit=1.00cm}
\begin{pspicture}*(-2,-2)(5.00,6.00)
\pstTriangle[PointSymbol=none](0.00,0.00){A}(3.00,0.00){B}(3.00,4.00){C} \psset{PointSymbol=none}
{\psset{linestyle=none, PointName=none}
\pstMediatorAB{A}{B}{K}{KP}
\pstMediatorAB[PosAngleA=-40]{C}{A}{J}{JP}
\pstMediatorAB[PosAngleA=75]{B}{C}{I}{IP}
}
\pstInterLL[PointSymbol=square, PosAngle=-170]{I}{IP}{J}{JP}{O}
\pstMiddleAB[PointSymbol=none,PosAngle=-10]{K}{KP}{m_c}
\pstMiddleAB[PointSymbol=none,PosAngle=-10]{J}{JP}{m_b}
\pstMiddleAB[PointSymbol=none,PosAngle=-10]{I}{IP}{m_a}
{
\psset{nodesep=-.8, linecolor=green}
\pstLineAB{O}{I}\pstLineAB{O}{J}\pstLineAB{O}{K}
}
\pstCircleOA[linecolor=red]{O}{A}
\end{pspicture} \\\text{Höhen} \\ \psset{xunit=1.00cm,yunit=1.00cm}
\begin{pspicture}*(-2,-2)(5.00,6.00)
\pstTriangle[PointSymbol=none](0.00,0.00){A}(3.00,0.00){B}(3.00,4.00){C} \psdot[dotstyle=square](O)
{\psset{ PointName=none}
\pstProjection{B}{A}{C}
\pstProjection{B}{C}{A}
\pstProjection{A}{C}{B}
}
\psset{linecolor=blue}\ncline{A}{A'}\ncline{C}{C'}\ncline{B}{B'}
\pstInterLL[PointSymbol=square]{A}{A'}{B}{B'}{H}
\pstMiddleAB[PointSymbol=none,PosAngle=-10]{A}{A'}{h_a}
\pstMiddleAB[PointSymbol=none,PosAngle=-10]{C}{C'}{h_c}
\pstMiddleAB[PointSymbol=none,PosAngle=-10]{B}{B'}{h_b}
\end{pspicture} \\ \text{Winkelhalbierende-Inkreis} \\ \psset{xunit=1.00cm,yunit=1.00cm}
\begin{pspicture}*(-2,-2)(5.00,6.00)
\pstTriangle[PointSymbol=none](0.00,0.00){A}(3.00,0.00){B}(3.00,4.00){C}
{\psset{linestyle=none, PointName=none,PointSymbol=none}
\pstBissectBAC{C}{B}{A}{B'}
\pstBissectBAC{B}{A}{C}{A'}
\pstBissectBAC{A}{C}{B}{C'}
\pstInterLL{A}{B}{C}{C'}{E}
\pstInterLL{A}{C}{B}{B'}{F}
\pstInterLL{B}{C}{A}{A'}{G}
}
{\psset{linecolor=blue}
\ncline{A}{G}\ncline{B}{F}\ncline{C}{E}
\pstInterLL[PointSymbol=square]{A}{A'}{B}{B'}{M_i}
\pstMiddleAB[PointSymbol=none,PosAngle=1]{A}{A'}{w_a}
\pstMiddleAB[PointSymbol=none,PosAngle=1]{C}{C'}{w_c}
\pstMiddleAB[PointSymbol=none,PosAngle=1]{B}{B'}{w_b}
}
\pstProjection[PointSymbol=none]{B}{A}{M_i}
\pstCircleOA[linecolor=red]{M_i}{M_i'}
\end{pspicture} \\
\end{document}
\end{array}$