-
<<
>>
G
B
I
$ R_{n} = r \cdot q \cdot \dfrac{q^{n} \ - \ 1}{q \ - \ 1} \quad R_{n} = r \cdot \dfrac{q^{n} \ - \ 1}{q \ - \ 1} $
$ r = \frac{R_{n} \cdot \ (q \ - \ 1)}{q \ \cdot \ (q^{n} \ - \ 1)} \quad r = \frac{R_{n} \ \cdot \ (q \ - \ 1)}{q^{n} \ - \ 1} $
$ n = \dfrac{ln[\frac{R_{n} \ \cdot \ (q \ - \ 1)}{r \ \cdot \ q}\ + \ 1]}{ln \ q} \quad n = \frac{ln[\dfrac{R_{n} \ \cdot \ (q \ -\ 1)}{r} \ + \ 1]}{ln \ q} $
Algebra-Finanzmathematik-Rentenrechnung
$\begin{array}{l}
\text{Gegeben:}\\
\text{Rentenendwert} \qquad R_{n} \\
\text{Rente } \qquad r \qquad \\
\text{Zinsfaktor} \qquad q \\
\text{Anzahl der Jahre} \qquad n\\
\\ \text{Gesucht:} \text{Rente } \qquad r \\
\end{array}$