-
<<
>>
G
B
I
$ V = (r_{1} ^{2} - r_{2} ^{2} )\cdot \pi \cdot h $
$ r_{1} = \sqrt{\frac{ V}{\pi \cdot h}+r_{2} ^{2} } $
$ r_{2} = \sqrt{r_{1} ^{2} - \frac{ V}{\pi \cdot h}} $
$ h = \frac{ V}{(r_{1} ^{2} - r_{2} ^{2} )\cdot \pi } $
Geometrie-Stereometrie-Hohlzylinder
$V = (r_{1} ^{2} - r_{2} ^{2} )\cdot \pi \cdot h$
1
2
$r_{1} = \sqrt{\frac{ V}{\pi \cdot h}+r_{2} ^{2} }$
1
$r_{2} = \sqrt{r_{1} ^{2} - \frac{ V}{\pi \cdot h}}$
1
$h = \frac{ V}{(r_{1} ^{2} - r_{2} ^{2} )\cdot \pi }$
1
Beispiel Nr: 01
$\begin{array}{l}
\text{Gegeben:}\\\text{Volumen} \qquad V \qquad [m^{3}] \\
\text{Kreiszahl} \qquad \pi \qquad [] \\
\text{Radius 2} \qquad r_{2} \qquad [m] \\
\text{Radius 1} \qquad r_{1} \qquad [m] \\
\\ \text{Gesucht:} \\\text{Körperhöhe} \qquad h \qquad [m] \\
\\ h = \frac{ V}{(r_{1} ^{2} - r_{2} ^{2} )\cdot \pi }\\ \textbf{Gegeben:} \\ V=4m^{3} \qquad \pi=3\frac{16}{113} \qquad r_{2}=2m \qquad r_{1}=6m \qquad \\ \\ \textbf{Rechnung:} \\
h = \frac{ V}{(r_{1} ^{2} - r_{2} ^{2} )\cdot \pi } \\
V=4m^{3}\\
\pi=3\frac{16}{113}\\
r_{2}=2m\\
r_{1}=6m\\
h = \frac{ 4m^{3}}{(6m ^{2} - 2m ^{2} )\cdot 3\frac{16}{113} }\\\\h=0,0398m
\\\\\\ \small \begin{array}{|l|} \hline V=\\ \hline 4 m^3 \\ \hline 4\cdot 10^{3} dm^3 \\ \hline 4\cdot 10^{6} cm^3 \\ \hline 4\cdot 10^{9} mm^3 \\ \hline 4\cdot 10^{3} l \\ \hline 40 hl \\ \hline \end{array} \small \begin{array}{|l|} \hline r2=\\ \hline 2 m \\ \hline 20 dm \\ \hline 200 cm \\ \hline 2\cdot 10^{3} mm \\ \hline 2\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline r1=\\ \hline 6 m \\ \hline 60 dm \\ \hline 600 cm \\ \hline 6\cdot 10^{3} mm \\ \hline 6\cdot 10^{6} \mu m \\ \hline \end{array}\\ \small \begin{array}{|l|} \hline h=\\ \hline 0,0398 m \\ \hline 0,398 dm \\ \hline 3,98 cm \\ \hline 39,8 mm \\ \hline 3,98\cdot 10^{4} \mu m \\ \hline \end{array} \end{array}$