Geometrie-Viereck-Parallelogramm
$A = g\cdot h$
$g = \frac{A}{h}$
1
2
3
4
5
6
7
8
9
10
11
12
$h = \frac{A}{g}$
1
2
3
4
5
6
7
8
9
10
11
12
Beispiel Nr: 01
$\begin{array}{l}
\text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\
\text{Höhe} \qquad h \qquad [m] \\
\\ \text{Gesucht:} \\\text{Grundlinie} \qquad g \qquad [m] \\
\\ g = \frac{A}{h}\\ \textbf{Gegeben:} \\ A=1m^{2} \qquad h=3m \qquad \\ \\ \textbf{Rechnung:} \\
g = \frac{A}{h} \\
A=1m^{2}\\
h=3m\\
g = \frac{1m^{2}}{3m}\\\\g=\frac{1}{3}m
\\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline 1 m^2 \\ \hline 100 dm^2 \\ \hline 10^{4} cm^2 \\ \hline 10^{6} mm^2 \\ \hline \frac{1}{100} a \\ \hline 0,0001 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline h=\\ \hline 3 m \\ \hline 30 dm \\ \hline 300 cm \\ \hline 3\cdot 10^{3} mm \\ \hline 3\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline g=\\ \hline \frac{1}{3} m \\ \hline 3\frac{1}{3} dm \\ \hline 33\frac{1}{3} cm \\ \hline 333\frac{1}{3} mm \\ \hline 333333\frac{1}{3} \mu m \\ \hline \end{array} \end{array}$