Geometrie-Viereck-Parallelogramm

$A = g\cdot h$
$g = \frac{A}{h}$
1 2 3 4 5 6 7 8 9 10 11 12
$h = \frac{A}{g}$
1 2 3 4 5 6 7 8 9 10 11 12
Beispiel Nr: 01
$\begin{array}{l} \text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\ \text{Grundlinie} \qquad g \qquad [m] \\ \\ \text{Gesucht:} \\\text{Höhe} \qquad h \qquad [m] \\ \\ h = \frac{A}{g}\\ \textbf{Gegeben:} \\ A=3m^{2} \qquad g=6m \qquad \\ \\ \textbf{Rechnung:} \\ h = \frac{A}{g} \\ A=3m^{2}\\ g=6m\\ h = \frac{3m^{2}}{6m}\\\\h=\frac{1}{2}m \\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline 3 m^2 \\ \hline 300 dm^2 \\ \hline 3\cdot 10^{4} cm^2 \\ \hline 3\cdot 10^{6} mm^2 \\ \hline \frac{3}{100} a \\ \hline 0,0003 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline g=\\ \hline 6 m \\ \hline 60 dm \\ \hline 600 cm \\ \hline 6\cdot 10^{3} mm \\ \hline 6\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline h=\\ \hline \frac{1}{2} m \\ \hline 5 dm \\ \hline 50 cm \\ \hline 500 mm \\ \hline 5\cdot 10^{5} \mu m \\ \hline \end{array} \end{array}$