Geometrie-Stereometrie-Kreiskegel

$V = \frac{1}{3}\cdot r^{2} \cdot \pi \cdot h$
1 2
$r = \sqrt{\frac{3\cdot V}{\pi \cdot h}}$
1
$h = \frac{3\cdot V}{r^{2} \cdot \pi }$
1
$O = r\cdot \pi \cdot (r+s)$
1
$s = \frac{ O}{r\cdot \pi } - r$
1 2 3
$r = \frac{-\pi \cdot s + \sqrt{(\pi \cdot s)^{2} +4\cdot \pi \cdot O}}{ 2\cdot \pi }$
1 2 3
$M = r\cdot \pi \cdot s$
$s = \frac{ M}{r\cdot \pi }$
1 2 3 4
$r = \frac{ M}{s\cdot \pi }$
1 2 3 4 5
$s =\sqrt{h^{2} + r^{2} }$
1
$r =\sqrt{s^{2} - h^{2} }$
1
$h =\sqrt{s^{2} - r^{2} }$
1
Beispiel Nr: 03
$\begin{array}{l} \text{Gegeben:}\\ \text{Radius} \qquad r \qquad [m] \\ \text{Kreiszahl} \qquad \pi \qquad [] \\ \text{Mantelfläche} \qquad M \qquad [m^{2}] \\ \\ \text{Gesucht:} \\\text{Mantellinie} \qquad s \qquad [m] \\ \\ s = \frac{ M}{r\cdot \pi }\\ \textbf{Gegeben:} \\ r=3\frac{2}{5}m \qquad \pi=3\frac{16}{113} \qquad M=120m^{2} \qquad \\ \\ \textbf{Rechnung:} \\ s = \frac{ M}{r\cdot \pi } \\ r=3\frac{2}{5}m\\ \pi=3\frac{16}{113}\\ M=120m^{2}\\ s = \frac{ 120m^{2}}{3\frac{2}{5}m\cdot 3\frac{16}{113} }\\\\s=11,2m \\\\\\ \small \begin{array}{|l|} \hline r=\\ \hline 3\frac{2}{5} m \\ \hline 34 dm \\ \hline 340 cm \\ \hline 3,4\cdot 10^{3} mm \\ \hline 3,4\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline M=\\ \hline 120 m^2 \\ \hline 1,2\cdot 10^{4} dm^2 \\ \hline 1,2\cdot 10^{6} cm^2 \\ \hline 1,2\cdot 10^{8} mm^2 \\ \hline 1\frac{1}{5} a \\ \hline 0,012 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline s=\\ \hline 11,2 m \\ \hline 112 dm \\ \hline 1,12\cdot 10^{3} cm \\ \hline 1,12\cdot 10^{4} mm \\ \hline 1,12\cdot 10^{7} \mu m \\ \hline \end{array} \end{array}$