-
<<
>>
G
B
I
$ V = \frac{1}{3}\cdot r^{2} \cdot \pi \cdot h $
$ r = \sqrt{\frac{3\cdot V}{\pi \cdot h}} $
$ h = \frac{3\cdot V}{r^{2} \cdot \pi } $
$ O = r\cdot \pi \cdot (r+s) $
$ s = \frac{ O}{r\cdot \pi } - r $
$ r = \frac{-\pi \cdot s + \sqrt{(\pi \cdot s)^{2} +4\cdot \pi \cdot O}}{ 2\cdot \pi } $
$ M = r\cdot \pi \cdot s $
$ s = \frac{ M}{r\cdot \pi } $
$ r = \frac{ M}{s\cdot \pi } $
$ s =\sqrt{h^{2} + r^{2} } $
$ r =\sqrt{s^{2} - h^{2} } $
$ h =\sqrt{s^{2} - r^{2} } $
Geometrie-Stereometrie-Kreiskegel
$V = \frac{1}{3}\cdot r^{2} \cdot \pi \cdot h$
1
2
$r = \sqrt{\frac{3\cdot V}{\pi \cdot h}}$
1
$h = \frac{3\cdot V}{r^{2} \cdot \pi }$
1
$O = r\cdot \pi \cdot (r+s)$
1
$s = \frac{ O}{r\cdot \pi } - r$
1
2
3
$r = \frac{-\pi \cdot s + \sqrt{(\pi \cdot s)^{2} +4\cdot \pi \cdot O}}{ 2\cdot \pi }$
1
2
3
$M = r\cdot \pi \cdot s$
$s = \frac{ M}{r\cdot \pi }$
1
2
3
4
$r = \frac{ M}{s\cdot \pi }$
1
2
3
4
5
$s =\sqrt{h^{2} + r^{2} }$
1
$r =\sqrt{s^{2} - h^{2} }$
1
$h =\sqrt{s^{2} - r^{2} }$
1
Beispiel Nr: 03
$\begin{array}{l}
\text{Gegeben:}\\ \text{Radius} \qquad r \qquad [m] \\
\text{Kreiszahl} \qquad \pi \qquad [] \\
\text{Oberfläche} \qquad O \qquad [m^{2}] \\
\\ \text{Gesucht:} \\\text{Mantellinie} \qquad s \qquad [m] \\
\\ s = \frac{ O}{r\cdot \pi } - r\\ \textbf{Gegeben:} \\ r=4m \qquad \pi=3\frac{16}{113} \qquad O=20m^{2} \qquad \\ \\ \textbf{Rechnung:} \\
s = \frac{ O}{r\cdot \pi } - r \\
r=4m\\
\pi=3\frac{16}{113}\\
O=20m^{2}\\
s = \frac{ 20m^{2}}{4m\cdot 3\frac{16}{113} } - 4m\\\\s=-2\frac{29}{71}m
\\\\\\ \small \begin{array}{|l|} \hline r=\\ \hline 4 m \\ \hline 40 dm \\ \hline 400 cm \\ \hline 4\cdot 10^{3} mm \\ \hline 4\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline O=\\ \hline 20 m^2 \\ \hline 2\cdot 10^{3} dm^2 \\ \hline 2\cdot 10^{5} cm^2 \\ \hline 2\cdot 10^{7} mm^2 \\ \hline \frac{1}{5} a \\ \hline 0,002 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline s=\\ \hline -2\frac{29}{71} m \\ \hline -24,1 dm \\ \hline -241 cm \\ \hline -2,41\cdot 10^{3} mm \\ \hline -2408450\frac{16}{27} \mu m \\ \hline \end{array} \end{array}$