Geometrie-Viereck-Parallelogramm

$A = g\cdot h$
$g = \frac{A}{h}$
1 2 3 4 5 6 7 8 9 10 11 12
$h = \frac{A}{g}$
1 2 3 4 5 6 7 8 9 10 11 12
Beispiel Nr: 03
$\begin{array}{l} \text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\ \text{Höhe} \qquad h \qquad [m] \\ \\ \text{Gesucht:} \\\text{Grundlinie} \qquad g \qquad [m] \\ \\ g = \frac{A}{h}\\ \textbf{Gegeben:} \\ A=\frac{1}{2}m^{2} \qquad h=4m \qquad \\ \\ \textbf{Rechnung:} \\ g = \frac{A}{h} \\ A=\frac{1}{2}m^{2}\\ h=4m\\ g = \frac{\frac{1}{2}m^{2}}{4m}\\\\g=\frac{1}{8}m \\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline \frac{1}{2} m^2 \\ \hline 50 dm^2 \\ \hline 5\cdot 10^{3} cm^2 \\ \hline 5\cdot 10^{5} mm^2 \\ \hline 0,005 a \\ \hline 5\cdot 10^{-5} ha \\ \hline \end{array} \small \begin{array}{|l|} \hline h=\\ \hline 4 m \\ \hline 40 dm \\ \hline 400 cm \\ \hline 4\cdot 10^{3} mm \\ \hline 4\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline g=\\ \hline \frac{1}{8} m \\ \hline 1\frac{1}{4} dm \\ \hline 12\frac{1}{2} cm \\ \hline 125 mm \\ \hline 1,25\cdot 10^{5} \mu m \\ \hline \end{array} \end{array}$