-
<<
>>
G
B
I
$ B_{t} = B_{0} \cdot (1 - \frac{ p}{100})^{t} $
$ B_{0} = \frac{B_{t} }{(1 - \frac{ p}{100})^{t} } $
$ t =\frac{\ln(B_{t} ) - \ln(B_{0} )}{ \ln(1 - \frac{ p}{100})} $
$ p = (1 - ^{t} \sqrt{\frac{ B_{t} }{B_{0} }})\cdot 100 $
Algebra-Finanzmathematik-Degressive Abschreibung
$B_{t} = B_{0} \cdot (1 - \frac{ p}{100})^{t}$
1
2
3
4
5
6
$B_{0} = \frac{B_{t} }{(1 - \frac{ p}{100})^{t} }$
1
2
3
4
5
6
$t =\frac{\ln(B_{t} ) - \ln(B_{0} )}{ \ln(1 - \frac{ p}{100})}$
1
2
3
4
5
6
7
$p = (1 - ^{t} \sqrt{\frac{ B_{t} }{B_{0} }})\cdot 100$
1
2
3
4
5
6
Beispiel Nr: 04
$\begin{array}{l} \text{Gegeben:}\\\text{Anzahl der Jahre} \qquad t \qquad \\
\text{Anschaffungswert} \qquad B_{0} \qquad [Euro] \\
\text{Buchwert} \qquad B_{t} \qquad [Euro] \\
\\ \text{Gesucht:} \\\text{Abschreibungssatz} \qquad p \qquad [\%] \\
\\ p = (1 - ^{t} \sqrt{\frac{ B_{t} }{B_{0} }})\cdot 100\\ \textbf{Gegeben:} \\ t=\frac{1}{4} \qquad B_{0}=1\frac{5}{7}Euro \qquad B_{t}=\frac{9}{11}Euro \qquad \\ \\ \textbf{Rechnung:} \\p = (1 - ^{t} \sqrt{\frac{ B_{t} }{B_{0} }})\cdot 100 \\
t=\frac{1}{4}\\
B_{0}=1\frac{5}{7}Euro\\
B_{t}=\frac{9}{11}Euro\\
p = (1 - ^{\frac{1}{4}} \sqrt{\frac{ \frac{9}{11}Euro }{1\frac{5}{7}Euro }})\cdot 100\\\\p=94,8\%
\\\\ \end{array}$