Geometrie-Viereck-Parallelogramm
$A = g\cdot h$
$g = \frac{A}{h}$
1
2
3
4
5
6
7
8
9
10
11
12
$h = \frac{A}{g}$
1
2
3
4
5
6
7
8
9
10
11
12
Beispiel Nr: 04
$\begin{array}{l}
\text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\
\text{Grundlinie} \qquad g \qquad [m] \\
\\ \text{Gesucht:} \\\text{Höhe} \qquad h \qquad [m] \\
\\ h = \frac{A}{g}\\ \textbf{Gegeben:} \\ A=12m^{2} \qquad g=14m \qquad \\ \\ \textbf{Rechnung:} \\
h = \frac{A}{g} \\
A=12m^{2}\\
g=14m\\
h = \frac{12m^{2}}{14m}\\\\h=\frac{6}{7}m
\\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline 12 m^2 \\ \hline 1,2\cdot 10^{3} dm^2 \\ \hline 1,2\cdot 10^{5} cm^2 \\ \hline 1,2\cdot 10^{7} mm^2 \\ \hline \frac{3}{25} a \\ \hline 0,0012 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline g=\\ \hline 14 m \\ \hline 140 dm \\ \hline 1,4\cdot 10^{3} cm \\ \hline 1,4\cdot 10^{4} mm \\ \hline 1,4\cdot 10^{7} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline h=\\ \hline \frac{6}{7} m \\ \hline 8\frac{4}{7} dm \\ \hline 85\frac{5}{7} cm \\ \hline 857\frac{1}{7} mm \\ \hline 857142\frac{6}{7} \mu m \\ \hline \end{array} \end{array}$