Geometrie-Viereck-Parallelogramm

$A = g\cdot h$
$g = \frac{A}{h}$
1 2 3 4 5 6 7 8 9 10 11 12
$h = \frac{A}{g}$
1 2 3 4 5 6 7 8 9 10 11 12
Beispiel Nr: 06
$\begin{array}{l} \text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\ \text{Höhe} \qquad h \qquad [m] \\ \\ \text{Gesucht:} \\\text{Grundlinie} \qquad g \qquad [m] \\ \\ g = \frac{A}{h}\\ \textbf{Gegeben:} \\ A=120m^{2} \qquad h=80m \qquad \\ \\ \textbf{Rechnung:} \\ g = \frac{A}{h} \\ A=120m^{2}\\ h=80m\\ g = \frac{120m^{2}}{80m}\\\\g=1\frac{1}{2}m \\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline 120 m^2 \\ \hline 1,2\cdot 10^{4} dm^2 \\ \hline 1,2\cdot 10^{6} cm^2 \\ \hline 1,2\cdot 10^{8} mm^2 \\ \hline 1\frac{1}{5} a \\ \hline 0,012 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline h=\\ \hline 80 m \\ \hline 800 dm \\ \hline 8\cdot 10^{3} cm \\ \hline 8\cdot 10^{4} mm \\ \hline 8\cdot 10^{7} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline g=\\ \hline 1\frac{1}{2} m \\ \hline 15 dm \\ \hline 150 cm \\ \hline 1,5\cdot 10^{3} mm \\ \hline 1,5\cdot 10^{6} \mu m \\ \hline \end{array} \end{array}$