Geometrie-Viereck-Parallelogramm

$A = g\cdot h$
$g = \frac{A}{h}$
1 2 3 4 5 6 7 8 9 10 11 12
$h = \frac{A}{g}$
1 2 3 4 5 6 7 8 9 10 11 12
Beispiel Nr: 07
$\begin{array}{l} \text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\ \text{Höhe} \qquad h \qquad [m] \\ \\ \text{Gesucht:} \\\text{Grundlinie} \qquad g \qquad [m] \\ \\ g = \frac{A}{h}\\ \textbf{Gegeben:} \\ A=1\frac{2}{3}m^{2} \qquad h=\frac{4}{5}m \qquad \\ \\ \textbf{Rechnung:} \\ g = \frac{A}{h} \\ A=1\frac{2}{3}m^{2}\\ h=\frac{4}{5}m\\ g = \frac{1\frac{2}{3}m^{2}}{\frac{4}{5}m}\\\\g=2\frac{1}{12}m \\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline 1\frac{2}{3} m^2 \\ \hline 166\frac{2}{3} dm^2 \\ \hline 16666\frac{2}{3} cm^2 \\ \hline 1666666\frac{2}{3} mm^2 \\ \hline \frac{1}{60} a \\ \hline 0,000167 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline h=\\ \hline \frac{4}{5} m \\ \hline 8 dm \\ \hline 80 cm \\ \hline 800 mm \\ \hline 8\cdot 10^{5} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline g=\\ \hline 2\frac{1}{12} m \\ \hline 20\frac{5}{6} dm \\ \hline 208\frac{1}{3} cm \\ \hline 2083\frac{1}{3} mm \\ \hline 2083333\frac{1}{3} \mu m \\ \hline \end{array} \end{array}$