Geometrie-Viereck-Parallelogramm
$A = g\cdot h$
$g = \frac{A}{h}$
1
2
3
4
5
6
7
8
9
10
11
12
$h = \frac{A}{g}$
1
2
3
4
5
6
7
8
9
10
11
12
Beispiel Nr: 08
$\begin{array}{l}
\text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\
\text{Höhe} \qquad h \qquad [m] \\
\\ \text{Gesucht:} \\\text{Grundlinie} \qquad g \qquad [m] \\
\\ g = \frac{A}{h}\\ \textbf{Gegeben:} \\ A=0,002m^{2} \qquad h=\frac{2}{5}m \qquad \\ \\ \textbf{Rechnung:} \\
g = \frac{A}{h} \\
A=0,002m^{2}\\
h=\frac{2}{5}m\\
g = \frac{0,002m^{2}}{\frac{2}{5}m}\\\\g=0,005m
\\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline 0,002 m^2 \\ \hline \frac{1}{5} dm^2 \\ \hline 20 cm^2 \\ \hline 2\cdot 10^{3} mm^2 \\ \hline 2\cdot 10^{-5} a \\ \hline 2\cdot 10^{-7} ha \\ \hline \end{array} \small \begin{array}{|l|} \hline h=\\ \hline \frac{2}{5} m \\ \hline 4 dm \\ \hline 40 cm \\ \hline 400 mm \\ \hline 4\cdot 10^{5} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline g=\\ \hline 0,005 m \\ \hline \frac{1}{20} dm \\ \hline \frac{1}{2} cm \\ \hline 5 mm \\ \hline 5\cdot 10^{3} \mu m \\ \hline \end{array} \end{array}$