Geometrie-Viereck-Parallelogramm

$A = g\cdot h$
$g = \frac{A}{h}$
1 2 3 4 5 6 7 8 9 10 11 12
$h = \frac{A}{g}$
1 2 3 4 5 6 7 8 9 10 11 12
Beispiel Nr: 08
$\begin{array}{l} \text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\ \text{Grundlinie} \qquad g \qquad [m] \\ \\ \text{Gesucht:} \\\text{Höhe} \qquad h \qquad [m] \\ \\ h = \frac{A}{g}\\ \textbf{Gegeben:} \\ A=0,002m^{2} \qquad g=\frac{2}{5}m \qquad \\ \\ \textbf{Rechnung:} \\ h = \frac{A}{g} \\ A=0,002m^{2}\\ g=\frac{2}{5}m\\ h = \frac{0,002m^{2}}{\frac{2}{5}m}\\\\h=0,005m \\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline 0,002 m^2 \\ \hline \frac{1}{5} dm^2 \\ \hline 20 cm^2 \\ \hline 2\cdot 10^{3} mm^2 \\ \hline 2\cdot 10^{-5} a \\ \hline 2\cdot 10^{-7} ha \\ \hline \end{array} \small \begin{array}{|l|} \hline g=\\ \hline \frac{2}{5} m \\ \hline 4 dm \\ \hline 40 cm \\ \hline 400 mm \\ \hline 4\cdot 10^{5} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline h=\\ \hline 0,005 m \\ \hline \frac{1}{20} dm \\ \hline \frac{1}{2} cm \\ \hline 5 mm \\ \hline 5\cdot 10^{3} \mu m \\ \hline \end{array} \end{array}$