Geometrie-Viereck-Parallelogramm
$A = g\cdot h$
$g = \frac{A}{h}$
1
2
3
4
5
6
7
8
9
10
11
12
$h = \frac{A}{g}$
1
2
3
4
5
6
7
8
9
10
11
12
Beispiel Nr: 11
$\begin{array}{l}
\text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\
\text{Höhe} \qquad h \qquad [m] \\
\\ \text{Gesucht:} \\\text{Grundlinie} \qquad g \qquad [m] \\
\\ g = \frac{A}{h}\\ \textbf{Gegeben:} \\ A=1\frac{1}{5}m^{2} \qquad h=1\frac{1}{2}m \qquad \\ \\ \textbf{Rechnung:} \\
g = \frac{A}{h} \\
A=1\frac{1}{5}m^{2}\\
h=1\frac{1}{2}m\\
g = \frac{1\frac{1}{5}m^{2}}{1\frac{1}{2}m}\\\\g=\frac{4}{5}m
\\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline 1\frac{1}{5} m^2 \\ \hline 120 dm^2 \\ \hline 1,2\cdot 10^{4} cm^2 \\ \hline 1,2\cdot 10^{6} mm^2 \\ \hline 0,012 a \\ \hline 0,00012 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline h=\\ \hline 1\frac{1}{2} m \\ \hline 15 dm \\ \hline 150 cm \\ \hline 1,5\cdot 10^{3} mm \\ \hline 1,5\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline g=\\ \hline \frac{4}{5} m \\ \hline 8 dm \\ \hline 80 cm \\ \hline 800 mm \\ \hline 8\cdot 10^{5} \mu m \\ \hline \end{array} \end{array}$