Geometrie-Viereck-Parallelogramm
 $A = g\cdot h$ 
 $g = \frac{A}{h}$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 $h = \frac{A}{g}$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
            
        
                Beispiel Nr: 11
            
        
           $\begin{array}{l} 
      \text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\
      \text{Höhe} \qquad h \qquad [m] \\
      \\ \text{Gesucht:} \\\text{Grundlinie} \qquad g \qquad [m] \\
     \\ g = \frac{A}{h}\\ \textbf{Gegeben:} \\ A=1\frac{1}{5}m^{2} \qquad h=1\frac{1}{2}m \qquad \\ \\ \textbf{Rechnung:} \\
      g = \frac{A}{h} \\
      A=1\frac{1}{5}m^{2}\\
      h=1\frac{1}{2}m\\
      g = \frac{1\frac{1}{5}m^{2}}{1\frac{1}{2}m}\\\\g=\frac{4}{5}m
    \\\\\\ \small \begin{array}{|l|} \hline A=\\  \hline 1\frac{1}{5} m^2  \\  \hline 120 dm^2  \\  \hline 1,2\cdot 10^{4} cm^2  \\  \hline 1,2\cdot 10^{6} mm^2  \\  \hline 0,012 a  \\  \hline 0,00012 ha  \\ \hline \end{array} \small \begin{array}{|l|} \hline h=\\  \hline 1\frac{1}{2} m  \\  \hline 15 dm  \\  \hline 150 cm  \\  \hline 1,5\cdot 10^{3} mm  \\  \hline 1,5\cdot 10^{6} \mu m  \\ \hline \end{array} \small \begin{array}{|l|} \hline g=\\  \hline \frac{4}{5} m  \\  \hline 8 dm  \\  \hline 80 cm  \\  \hline 800 mm  \\  \hline 8\cdot 10^{5} \mu m  \\ \hline \end{array}  \end{array}$