Geometrie-Viereck-Parallelogramm

$A = g\cdot h$
$g = \frac{A}{h}$
1 2 3 4 5 6 7 8 9 10 11 12
$h = \frac{A}{g}$
1 2 3 4 5 6 7 8 9 10 11 12
Beispiel Nr: 11
$\begin{array}{l} \text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\ \text{Höhe} \qquad h \qquad [m] \\ \\ \text{Gesucht:} \\\text{Grundlinie} \qquad g \qquad [m] \\ \\ g = \frac{A}{h}\\ \textbf{Gegeben:} \\ A=1\frac{1}{5}m^{2} \qquad h=1\frac{1}{2}m \qquad \\ \\ \textbf{Rechnung:} \\ g = \frac{A}{h} \\ A=1\frac{1}{5}m^{2}\\ h=1\frac{1}{2}m\\ g = \frac{1\frac{1}{5}m^{2}}{1\frac{1}{2}m}\\\\g=\frac{4}{5}m \\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline 1\frac{1}{5} m^2 \\ \hline 120 dm^2 \\ \hline 1,2\cdot 10^{4} cm^2 \\ \hline 1,2\cdot 10^{6} mm^2 \\ \hline 0,012 a \\ \hline 0,00012 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline h=\\ \hline 1\frac{1}{2} m \\ \hline 15 dm \\ \hline 150 cm \\ \hline 1,5\cdot 10^{3} mm \\ \hline 1,5\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline g=\\ \hline \frac{4}{5} m \\ \hline 8 dm \\ \hline 80 cm \\ \hline 800 mm \\ \hline 8\cdot 10^{5} \mu m \\ \hline \end{array} \end{array}$