Geometrie-Viereck-Rechtwinkliges Trapez

• $A = \frac{a+c}{ 2}\cdot h$
1 2 3 4 5 6 7 8 9 10 11 12
$a = \frac{2\cdot A}{ h} - c$
1 2 3 4 5
$c = \frac{2\cdot A}{ h} - a$
1 2 3 4 5
$h = \frac{2\cdot A}{a+c}$
1 2 3 4 5

Beispiel Nr: 02
$\text{Gegeben:}\\\text{Grundlinie c} \qquad c \qquad [m] \\ \text{Grundlinie a} \qquad a \qquad [m] \\ \text{Höhe} \qquad h \qquad [m] \\ \\ \text{Gesucht:} \\\text{Fläche} \qquad A \qquad [m^{2}] \\ \\ A = \frac{a+c}{ 2}\cdot h\\ \textbf{Gegeben:} \\ c=8m \qquad a=4m \qquad h=6m \qquad \\ \\ \textbf{Rechnung:} \\ A = \frac{a+c}{ 2}\cdot h \\ c=8m\\ a=4m\\ h=6m\\ A = \frac{4m+8m}{ 2}\cdot 6m\\\\A=36m^{2} \\\\\\ \small \begin{array}{|l|} \hline c=\\ \hline 8 m \\ \hline 80 dm \\ \hline 800 cm \\ \hline 8\cdot 10^{3} mm \\ \hline 8\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline a=\\ \hline 4 m \\ \hline 40 dm \\ \hline 400 cm \\ \hline 4\cdot 10^{3} mm \\ \hline 4\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline h=\\ \hline 6 m \\ \hline 60 dm \\ \hline 600 cm \\ \hline 6\cdot 10^{3} mm \\ \hline 6\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline A=\\ \hline 36 m^2 \\ \hline 3,6\cdot 10^{3} dm^2 \\ \hline 3,6\cdot 10^{5} cm^2 \\ \hline 3,6\cdot 10^{7} mm^2 \\ \hline \frac{9}{25} a \\ \hline 0,0036 ha \\ \hline \end{array}$