Geometrie-Trigonometrie-Rechtwinkliges Dreieck


  • $sin \alpha = \frac{a}{c}$
    1 2 3 4 5 6 7
    $a = sin \alpha \cdot c$
    1 2 3 4 5 6
    $c = \frac{ a}{sin\alpha }$
    1 2 3 4 5
    $cos \alpha = \frac{b}{c}$
    1 2 3 4 5 6 7
    $b = cos \alpha \cdot c$
    1 2 3 4 5 6
    $c = \frac{ b}{cos \alpha }$
    1 2 3 4 5
    $tan \alpha = \frac{a}{b}$
    1 2 3 4 5 6
    $a = tan \alpha \cdot b$
    1 2 3 4 5 6
    $b = \frac{ a}{tan\alpha }$
    1 2 3 4 5 6

Beispiel Nr: 04
$ \text{Gegeben:}\\\text{Winkel} \qquad \alpha \qquad [^{\circ}] \\ \text{Ankathete zu } \alpha \qquad b \qquad [m] \\ \\ \text{Gesucht:} \\\text{Hypotenuse} \qquad c \qquad [m] \\ \\ c = \frac{ b}{cos \alpha }\\ \textbf{Gegeben:} \\ \alpha=30^{\circ} \qquad b=3m \qquad \\ \\ \textbf{Rechnung:} \\ c = \frac{ b}{cos \alpha } \\ \alpha=30^{\circ}\\ b=3m\\ c = \frac{3m}{cos 30^{\circ} }\\\\c=3,46m \\\\\\ \small \begin{array}{|l|} \hline alpha=\\ \hline 30 ° \\ \hline 1,8\cdot 10^{3} \text{'} \\ \hline 1,08\cdot 10^{5} \text{''} \\ \hline 33\frac{1}{3} gon \\ \hline 0,524 rad \\ \hline \end{array} \small \begin{array}{|l|} \hline b=\\ \hline 3 m \\ \hline 30 dm \\ \hline 300 cm \\ \hline 3\cdot 10^{3} mm \\ \hline 3\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline c=\\ \hline 3,46 m \\ \hline 34,6 dm \\ \hline 346 cm \\ \hline 3,46\cdot 10^{3} mm \\ \hline 3,46\cdot 10^{6} \mu m \\ \hline \end{array}$