Geometrie-Trigonometrie-Rechtwinkliges Dreieck


  • $sin \alpha = \frac{a}{c}$
    1 2 3 4 5 6 7
    $a = sin \alpha \cdot c$
    1 2 3 4 5 6
    $c = \frac{ a}{sin\alpha }$
    1 2 3 4 5
    $cos \alpha = \frac{b}{c}$
    1 2 3 4 5 6 7
    $b = cos \alpha \cdot c$
    1 2 3 4 5 6
    $c = \frac{ b}{cos \alpha }$
    1 2 3 4 5
    $tan \alpha = \frac{a}{b}$
    1 2 3 4 5 6
    $a = tan \alpha \cdot b$
    1 2 3 4 5 6
    $b = \frac{ a}{tan\alpha }$
    1 2 3 4 5 6

Beispiel Nr: 03
$ \text{Gegeben:}\\\text{Winkel} \qquad \alpha \qquad [^{\circ}] \\ \text{Ankathete zu } \alpha \qquad b \qquad [m] \\ \\ \text{Gesucht:} \\\text{Gegenkathete zu } \alpha \qquad a \qquad [m] \\ \\ a = tan \alpha \cdot b\\ \textbf{Gegeben:} \\ \alpha=30^{\circ} \qquad b=2m \qquad \\ \\ \textbf{Rechnung:} \\ a = tan \alpha \cdot b \\ \alpha=30^{\circ}\\ b=2m\\ a = tan 30^{\circ} \cdot 2m\\\\a=1,15m \\\\\\ \small \begin{array}{|l|} \hline alpha=\\ \hline 30 ° \\ \hline 1,8\cdot 10^{3} \text{'} \\ \hline 1,08\cdot 10^{5} \text{''} \\ \hline 33\frac{1}{3} gon \\ \hline 0,524 rad \\ \hline \end{array} \small \begin{array}{|l|} \hline b=\\ \hline 2 m \\ \hline 20 dm \\ \hline 200 cm \\ \hline 2\cdot 10^{3} mm \\ \hline 2\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline a=\\ \hline 1,15 m \\ \hline 11,5 dm \\ \hline 115 cm \\ \hline 1,15\cdot 10^{3} mm \\ \hline 1,15\cdot 10^{6} \mu m \\ \hline \end{array}$