-
<<
>>
G
B
I
$ sin \alpha = \sqrt{1 - cos^{2} \alpha } $
$ cos \alpha = \sqrt{1 - sin^{2} \alpha } $
$ tan \alpha = \frac{sin \alpha }{cos \alpha } $
$ sin \alpha = tan\alpha \cdot cos \alpha $
$ cos \alpha = \frac{sin \alpha }{tan \alpha } $
Geometrie-Trigonometrie-Umrechnungen
$ sin^{2} \alpha + cos^{2} \alpha = 1 $
$sin \alpha = \sqrt{1 - cos^{2} \alpha }$
1
2
3
4
5
$cos \alpha = \sqrt{1 - sin^{2} \alpha }$
1
2
3
4
5
$tan \alpha = \frac{sin \alpha }{cos \alpha }$
1
2
3
4
5
6
$sin \alpha = tan\alpha \cdot cos \alpha$
1
2
3
4
$cos \alpha = \frac{sin \alpha }{tan \alpha }$
1
2
3
4
Beispiel Nr: 01
$\begin{array}{l}
\text{Gegeben:}\\\text{Winkel} \qquad \alpha \qquad [^{\circ}] \\
\\ \text{Gesucht:} \\\text{Tangens alpha} \qquad tan \alpha \qquad [] \\
\\ tan \alpha = \frac{sin \alpha }{cos \alpha }\\ \textbf{Gegeben:} \\ \alpha=5^{\circ} \qquad \\ \\ \textbf{Rechnung:} \\
tan \alpha = \frac{sin \alpha }{cos \alpha } \\
\alpha=5^{\circ}\\
tan 5^{\circ} = \frac{sin 5^{\circ} }{cos 5^{\circ} }\\
\\
tan 5^{\circ}=0,0875
\\\\\\ \small \begin{array}{|l|} \hline alpha=\\ \hline 5 ° \\ \hline 300 \text{'} \\ \hline 1,8\cdot 10^{4} \text{''} \\ \hline 5\frac{5}{9} gon \\ \hline 0,0873 rad \\ \hline \end{array} \small \begin{array}{|l|} \hline Tanalpha=\\ \hline 0,0875 rad \\ \hline 87,5 mrad \\ \hline 5,01 ^\circ \\ \hline 301 \text{'} \\ \hline 1,8\cdot 10^{4} \text{'''} \\ \hline \end{array} \end{array}$