- 
            
                    << 
    
                  >>  
    G         
                             B          
                
                 I         
                                                 
                                         
 
 $ sin \alpha  = \sqrt{1 - cos^{2} \alpha } $
                                      
                                          $ cos \alpha  = \sqrt{1 - sin^{2} \alpha } $
                                      
                                          $ tan \alpha  = \frac{sin \alpha  }{cos \alpha } $
                                      
                                          $ sin \alpha  = tan\alpha  \cdot  cos \alpha $
                                      
                                          $ cos \alpha  = \frac{sin \alpha  }{tan \alpha } $
Geometrie-Trigonometrie-Umrechnungen
 $ sin^{2} \alpha  + cos^{2} \alpha  = 1   $ 
 $sin \alpha  = \sqrt{1 - cos^{2} \alpha }$ 
1 
2 
3 
4 
5 
 $cos \alpha  = \sqrt{1 - sin^{2} \alpha }$ 
1 
2 
3 
4 
5 
 $tan \alpha  = \frac{sin \alpha  }{cos \alpha }$ 
1 
2 
3 
4 
5 
6 
 $sin \alpha  = tan\alpha  \cdot  cos \alpha$ 
1 
2 
3 
4 
 $cos \alpha  = \frac{sin \alpha  }{tan \alpha }$ 
1 
2 
3 
4 
            
        
                Beispiel Nr: 01
            
        
           $\begin{array}{l} 
      \text{Gegeben:}\\\text{Winkel} \qquad \alpha \qquad [^{\circ}] \\
      \\ \text{Gesucht:} \\\text{Tangens alpha} \qquad tan \alpha \qquad [] \\
     \\ tan \alpha  = \frac{sin \alpha  }{cos \alpha }\\ \textbf{Gegeben:} \\ \alpha=5^{\circ} \qquad \\ \\ \textbf{Rechnung:} \\
      tan \alpha  = \frac{sin \alpha  }{cos \alpha } \\
      \alpha=5^{\circ}\\
      tan 5^{\circ}  = \frac{sin 5^{\circ}  }{cos 5^{\circ} }\\
	  \\
	  tan 5^{\circ}=0,0875
    \\\\\\ \small \begin{array}{|l|} \hline alpha=\\  \hline 5 °  \\  \hline 300 \text{'}  \\  \hline 1,8\cdot 10^{4} \text{''}  \\  \hline 5\frac{5}{9} gon  \\  \hline 0,0873 rad  \\ \hline \end{array} \small \begin{array}{|l|} \hline Tanalpha=\\  \hline 0,0875 rad  \\  \hline 87,5 mrad  \\  \hline 5,01 ^\circ  \\  \hline 301 \text{'}  \\  \hline 1,8\cdot 10^{4} \text{'''}  \\ \hline \end{array}  \end{array}$