$
\text{Gegeben:}\\\text{Winkel} \qquad \alpha \qquad [^{\circ}] \\
\\ \text{Gesucht:} \\\text{Sinus alpha} \qquad sin \alpha \qquad [] \\
\\ sin \alpha = \sqrt{1 - cos^{2} \alpha }\\ \textbf{Gegeben:} \\ \alpha=60^{\circ} \qquad \\ \\ \textbf{Rechnung:} \\
sin \alpha = \sqrt{1 - cos^{2} \alpha } \\
\alpha=60^{\circ}\\
sin 60^{\circ} = \sqrt{1 - cos^{2} 60^{\circ} }\\\\sin 60^{\circ}=0,866
\\\\\\ \small \begin{array}{|l|} \hline alpha=\\ \hline 60 ° \\ \hline 3,6\cdot 10^{3} \text{'} \\ \hline 2,16\cdot 10^{5} \text{''} \\ \hline 66\frac{2}{3} gon \\ \hline 1,05 rad \\ \hline \end{array} \small \begin{array}{|l|} \hline sinalpha=\\ \hline 0,866 rad \\ \hline 866 mrad \\ \hline 49,6 ^\circ \\ \hline 2,98\cdot 10^{3} \text{'} \\ \hline 1,79\cdot 10^{5} \text{'''} \\ \hline \end{array}$