Geometrie-Trigonometrie-Umrechnungen

• $sin^{2} \alpha + cos^{2} \alpha = 1$
$sin \alpha = \sqrt{1 - cos^{2} \alpha }$
1 2 3 4 5
$cos \alpha = \sqrt{1 - sin^{2} \alpha }$
1 2 3 4 5
$tan \alpha = \frac{sin \alpha }{cos \alpha }$
1 2 3 4 5 6
$sin \alpha = tan\alpha \cdot cos \alpha$
1 2 3 4
$cos \alpha = \frac{sin \alpha }{tan \alpha }$
1 2 3 4

Beispiel Nr: 04
$\text{Gegeben:}\\\text{Winkel} \qquad \alpha \qquad [^{\circ}] \\ \\ \text{Gesucht:} \\\text{Kosinus alpha} \qquad cos \alpha \qquad [] \\ \\ cos \alpha = \sqrt{1 - sin^{2} \alpha }\\ \textbf{Gegeben:} \\ \alpha=90^{\circ} \qquad \\ \\ \textbf{Rechnung:} \\ cos \alpha = \sqrt{1 - sin^{2} \alpha } \\ \alpha=90^{\circ}\\ cos 90^{\circ} = \sqrt{1 - sin^{2} 90^{\circ} }\\\\cos 90^{\circ}=0 \\\\\\ \small \begin{array}{|l|} \hline alpha=\\ \hline 90 ° \\ \hline 5,4\cdot 10^{3} \text{'} \\ \hline 3,24\cdot 10^{5} \text{''} \\ \hline 100 gon \\ \hline 1,57 rad \\ \hline \end{array} \small \begin{array}{|l|} \hline cosalpha=\\ \hline 0 rad \\ \hline 0 mrad \\ \hline 0 ^\circ \\ \hline 0 \text{'} \\ \hline 0 \text{'''} \\ \hline \end{array}$