Geometrie-Trigonometrie-Umrechnungen


  • $ sin^{2} \alpha + cos^{2} \alpha = 1 $
    $sin \alpha = \sqrt{1 - cos^{2} \alpha }$
    1 2 3 4 5
    $cos \alpha = \sqrt{1 - sin^{2} \alpha }$
    1 2 3 4 5
    $tan \alpha = \frac{sin \alpha }{cos \alpha }$
    1 2 3 4 5 6
    $sin \alpha = tan\alpha \cdot cos \alpha$
    1 2 3 4
    $cos \alpha = \frac{sin \alpha }{tan \alpha }$
    1 2 3 4

Beispiel Nr: 01
$ \text{Gegeben:}\\\text{Winkel} \qquad \alpha \qquad [^{\circ}] \\ \\ \text{Gesucht:} \\\text{Sinus alpha} \qquad sin \alpha \qquad [] \\ \\ sin \alpha = tan\alpha \cdot cos \alpha\\ \textbf{Gegeben:} \\ \alpha=15^{\circ} \qquad \\ \\ \textbf{Rechnung:} \\ sin \alpha = tan\alpha \cdot cos \alpha \\ \alpha=15^{\circ}\\ sin \alpha = tan15^{\circ} \cdot cos 15^{\circ}\\\\sin \alpha=0,259 \\\\\\ \small \begin{array}{|l|} \hline alpha=\\ \hline 15 ° \\ \hline 900 \text{'} \\ \hline 5,4\cdot 10^{4} \text{''} \\ \hline 16\frac{2}{3} gon \\ \hline 0,262 rad \\ \hline \end{array} \small \begin{array}{|l|} \hline sinalpha=\\ \hline 0,259 rad \\ \hline 259 mrad \\ \hline 14,8 ^\circ \\ \hline 890 \text{'} \\ \hline 5,34\cdot 10^{4} \text{'''} \\ \hline \end{array}$