- 
            
                    << 
    
                  >>  
    G         
                             B          
                
                 I         
                                                 
                                         
 
 $ sin \alpha  = \sqrt{1 - cos^{2} \alpha } $
                                      
                                          $ cos \alpha  = \sqrt{1 - sin^{2} \alpha } $
                                      
                                          $ tan \alpha  = \frac{sin \alpha  }{cos \alpha } $
                                      
                                          $ sin \alpha  = tan\alpha  \cdot  cos \alpha $
                                      
                                          $ cos \alpha  = \frac{sin \alpha  }{tan \alpha } $
Geometrie-Trigonometrie-Umrechnungen
 $ sin^{2} \alpha  + cos^{2} \alpha  = 1   $ 
 $sin \alpha  = \sqrt{1 - cos^{2} \alpha }$ 
1 
2 
3 
4 
5 
 $cos \alpha  = \sqrt{1 - sin^{2} \alpha }$ 
1 
2 
3 
4 
5 
 $tan \alpha  = \frac{sin \alpha  }{cos \alpha }$ 
1 
2 
3 
4 
5 
6 
 $sin \alpha  = tan\alpha  \cdot  cos \alpha$ 
1 
2 
3 
4 
 $cos \alpha  = \frac{sin \alpha  }{tan \alpha }$ 
1 
2 
3 
4 
            
        
                Beispiel Nr: 03
            
        
           $\begin{array}{l} 
      \text{Gegeben:}\\\text{Winkel} \qquad \alpha \qquad [^{\circ}] \\
      \\ \text{Gesucht:} \\\text{Kosinus alpha} \qquad cos \alpha \qquad [] \\
     \\ cos \alpha  = \frac{sin \alpha  }{tan \alpha }\\ \textbf{Gegeben:} \\ \alpha=60^{\circ} \qquad \\ \\ \textbf{Rechnung:} \\
      cos \alpha  = \frac{sin \alpha  }{tan \alpha } \\
      \alpha=60^{\circ}\\
      cos \alpha  = \frac{sin 60^{\circ}  }{tan 60^{\circ} }\\\\cos \alpha=\frac{1}{2}
    \\\\\\ \small \begin{array}{|l|} \hline alpha=\\  \hline 60 °  \\  \hline 3,6\cdot 10^{3} \text{'}  \\  \hline 2,16\cdot 10^{5} \text{''}  \\  \hline 66\frac{2}{3} gon  \\  \hline 1,05 rad  \\ \hline \end{array} \small \begin{array}{|l|} \hline cosalpha=\\  \hline \frac{1}{2} rad  \\  \hline 500 mrad  \\  \hline 28,6 ^\circ  \\  \hline 1,72\cdot 10^{3} \text{'}  \\  \hline 1,03\cdot 10^{5} \text{'''}  \\ \hline \end{array}  \end{array}$