Geometrie-Trigonometrie-Umrechnungen

$ sin^{2} \alpha + cos^{2} \alpha = 1 $
$sin \alpha = \sqrt{1 - cos^{2} \alpha }$
1 2 3 4 5
$cos \alpha = \sqrt{1 - sin^{2} \alpha }$
1 2 3 4 5
$tan \alpha = \frac{sin \alpha }{cos \alpha }$
1 2 3 4 5 6
$sin \alpha = tan\alpha \cdot cos \alpha$
1 2 3 4
$cos \alpha = \frac{sin \alpha }{tan \alpha }$
1 2 3 4
Beispiel Nr: 03
$\begin{array}{l} \text{Gegeben:}\\\text{Winkel} \qquad \alpha \qquad [^{\circ}] \\ \\ \text{Gesucht:} \\\text{Tangens alpha} \qquad tan \alpha \qquad [] \\ \\ tan \alpha = \frac{sin \alpha }{cos \alpha }\\ \textbf{Gegeben:} \\ \alpha=30^{\circ} \qquad \\ \\ \textbf{Rechnung:} \\ tan \alpha = \frac{sin \alpha }{cos \alpha } \\ \alpha=30^{\circ}\\ tan 30^{\circ} = \frac{sin 30^{\circ} }{cos 30^{\circ} }\\ \\ tan 30^{\circ}=0,577 \\\\\\ \small \begin{array}{|l|} \hline alpha=\\ \hline 30 ° \\ \hline 1,8\cdot 10^{3} \text{'} \\ \hline 1,08\cdot 10^{5} \text{''} \\ \hline 33\frac{1}{3} gon \\ \hline 0,524 rad \\ \hline \end{array} \small \begin{array}{|l|} \hline Tanalpha=\\ \hline 0,577 rad \\ \hline 577 mrad \\ \hline 33,1 ^\circ \\ \hline 1,98\cdot 10^{3} \text{'} \\ \hline 1,19\cdot 10^{5} \text{'''} \\ \hline \end{array} \end{array}$