-
<<
>>
G
B
I
$ K_{t} = K_{0} \cdot (1 + \frac{ p}{100})^{t} $
$ K_{0} = \frac{ K_{t} }{(1 + \frac{ p}{100})^{t} } $
$ p = (^{t} \sqrt{\frac{K_{t} }{K_{0} }}-1)\cdot 100 $
$ t =\frac{\ln(K_{t} ) - \ln(K_{0} )}{\ln(1 + \frac{ p}{100})} $
Algebra-Finanzmathematik-Zinseszinsformel
$K_{t} = K_{0} \cdot (1 + \frac{ p}{100})^{t}$
1
2
3
4
5
6
$K_{0} = \frac{ K_{t} }{(1 + \frac{ p}{100})^{t} }$
1
2
3
4
5
6
$p = (^{t} \sqrt{\frac{K_{t} }{K_{0} }}-1)\cdot 100$
1
2
3
4
5
6
$t =\frac{\ln(K_{t} ) - \ln(K_{0} )}{\ln(1 + \frac{ p}{100})}$
1
2
3
4
5
6
Beispiel Nr: 06
$\begin{array}{l} \text{Gegeben:}\\\text{Anzahl der Jahre} \qquad t \qquad \\
\text{Kapital nach t Jahren} \qquad K_{t} \qquad [Euro] \\
\text{Anfangskapital} \qquad K_{0} \qquad [Euro] \\
\\ \text{Gesucht:} \\\text{Zinssatz} \qquad p \qquad [\%] \\
\\ p = (^{t} \sqrt{\frac{K_{t} }{K_{0} }}-1)\cdot 100\\ \textbf{Gegeben:} \\ t=\frac{3}{7} \qquad K_{t}=\frac{1}{2}Euro \qquad K_{0}=\frac{7}{16}Euro \qquad \\ \\ \textbf{Rechnung:} \\p = (^{t} \sqrt{\frac{K_{t} }{K_{0} }}-1)\cdot 100 \\
t=\frac{3}{7}\\
K_{t}=\frac{1}{2}Euro\\
K_{0}=\frac{7}{16}Euro\\
p = (^{\frac{3}{7}} \sqrt{\frac{\frac{1}{2}Euro }{\frac{7}{16}Euro }}-1)\cdot 100\\\\p=36,6\%
\\\\ \end{array}$