- 
            
                    << 
    
                  >>  
    G         
                             B          
                
                 I         
                                                 
                                         
 $ V =\frac{1}{3} G\cdot h $
                                      
                                          $ G = \frac{3 \cdot V}{h} $
                                      
                                          $ h = \frac{3 \cdot V}{G} $
                                      
                                          $ O =  G +M  $
                                      
                                          $ G = O-M $
                                      
                                          $ M =  O- G   $
                                      
                                          $ \text{Rechteckige Pyramide} $
                                      
                                          $ \text{Quadratische Pyramide} $
Geometrie-Stereometrie-Pyramide
 $V =\frac{1}{3} G\cdot h$ 
1 
2 
3 
4 
 $G = \frac{3 \cdot V}{h}$ 
1 
2 
 $h = \frac{3 \cdot V}{G}$ 
1 
2 
3 
 $O =  G +M $ 
1 
2 
 $G = O-M$ 
1 
2 
3 
 $M =  O- G  $ 
1 
2 
 $\text{Rechteckige Pyramide}$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
 $\text{Quadratische Pyramide}$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
            
        
                Beispiel Nr: 08
            
        
           $\begin{array}{l} 
      \text{Gegeben:}\\
	  \text{Länge der Seite } \qquad a \qquad [m] \\
	   	  \text{Körperhöhe } \qquad h \qquad [m] \\
     	      \\ \text{Gesucht:} \\
		    	  \text{Diagonale } \qquad d \qquad [m] \\
				    \text{Seitenkante } \qquad s \qquad [m] \\
	  \text{Grundfläche} \qquad G \qquad [m^{2}] \\ 
	   \text{Mantelfläche} \qquad M \qquad [m^{2}] \\ 
	      \text{Volumen} \qquad V \qquad [m^{3}] \\ 
     \\ \text{Quadratische Pyramide}\\ \textbf{Gegeben:} \\ a=3m \qquad h=5m \\ \\ \textbf{Rechnung:} \\
 \text{Pythagoras im} \bigtriangleup ABC \qquad
d=\sqrt{a^2+a^2}    \\
d=\sqrt{(3m)^2+(3m)^2} =4,24m   \\
\text{Pythagoras im} \bigtriangleup LM_1S   \qquad
h_1=\sqrt{\left(\dfrac{a}{2}\right)^2+h^2}   \\
h_1=\sqrt{\left(\dfrac{3m}{2}\right)^2+(5m)^2}  =5,22m \\
\text{Pythagoras im} \bigtriangleup ALS    \qquad
s=\sqrt{\left(\dfrac{d}{2}\right)^2+h^2}  \\
s=\sqrt{\left(\dfrac{4,24m}{2}\right)^2+(5m)^2}  =5,43m \\
\text{Mantelfläche}  \qquad
M= 4 \cdot \dfrac{1}{2} a \cdot h_1    \\
M= 4 \cdot \dfrac{1}{2} 3m \cdot 5,22m  =31,3m^{2} \\
\text{Grundfläche}   \qquad
G= a^2 \\
G= (3m)^2=9m^{2} \\
\text{Oberfläche}   \qquad
O= G+M \\
O= 9m^{2}+31,3m^{2}=40,3m^{3}  \\
\text{Volumen}   \qquad
V= \dfrac{1}{3} a^2 \cdot h   \\
V= \dfrac{1}{3} (3m)^2 \cdot 5m =15m^{3}   \\
\measuredangle CAS \qquad \tan \eta=\frac{h}{\frac{1}{2}d} \\
 \tan \eta=\frac{5m}{\frac{1}{2}4,24m} \\
 \eta=67 ^{\circ}\\
\measuredangle SM_1L \qquad \tan \epsilon=\frac{h}{\frac{1}{2}a} \\
\tan \epsilon=\frac{5m}{\frac{1}{2}3m} \\
\epsilon=73,3^{\circ} \\
    \\\\\\ \small \begin{array}{|l|} \hline a=\\  \hline 3 m  \\  \hline 30 dm  \\  \hline 300 cm  \\  \hline 3\cdot 10^{3} mm  \\  \hline 3\cdot 10^{6} \mu m  \\ \hline \end{array} \small \begin{array}{|l|} \hline h=\\  \hline 5 m  \\  \hline 50 dm  \\  \hline 500 cm  \\  \hline 5\cdot 10^{3} mm  \\  \hline 5\cdot 10^{6} \mu m  \\ \hline \end{array} \small \begin{array}{|l|} \hline V=\\  \hline 15 m^3  \\  \hline 1,5\cdot 10^{4} dm^3  \\  \hline 1,5\cdot 10^{7} cm^3  \\  \hline 1,5\cdot 10^{10} mm^3  \\  \hline 1,5\cdot 10^{4} l  \\  \hline 150 hl  \\ \hline \end{array} \small \begin{array}{|l|} \hline d=\\  \hline 4,24 m  \\  \hline 42,4 dm  \\  \hline 424 cm  \\  \hline 4,24\cdot 10^{3} mm  \\  \hline 4,24\cdot 10^{6} \mu m  \\ \hline \end{array}\\ \small \begin{array}{|l|} \hline h1=\\  \hline 5,22 m  \\  \hline 52,2 dm  \\  \hline 522 cm  \\  \hline 5,22\cdot 10^{3} mm  \\  \hline 5,22\cdot 10^{6} \mu m  \\ \hline \end{array} \small \begin{array}{|l|} \hline h2=\\  \hline 5,22 m  \\  \hline 52,2 dm  \\  \hline 522 cm  \\  \hline 5,22\cdot 10^{3} mm  \\  \hline 5,22\cdot 10^{6} \mu m  \\ \hline \end{array} \small \begin{array}{|l|} \hline s=\\  \hline 5,43 m  \\  \hline 54,3 dm  \\  \hline 543 cm  \\  \hline 5,43\cdot 10^{3} mm  \\  \hline 5,43\cdot 10^{6} \mu m  \\ \hline \end{array} \small \begin{array}{|l|} \hline M=\\  \hline 31,3 m^2  \\  \hline 3,13\cdot 10^{3} dm^2  \\  \hline 3,13\cdot 10^{5} cm^2  \\  \hline 3,13\cdot 10^{7} mm^2  \\  \hline 0,313 a  \\  \hline 0,00313 ha  \\ \hline \end{array}\\ \small \begin{array}{|l|} \hline G=\\  \hline 9 m^2  \\  \hline 900 dm^2  \\  \hline 9\cdot 10^{4} cm^2  \\  \hline 9\cdot 10^{6} mm^2  \\  \hline \frac{9}{100} a  \\  \hline 0,0009 ha  \\ \hline \end{array} \small \begin{array}{|l|} \hline O=\\  \hline 40,3 m^3  \\  \hline 4,03\cdot 10^{4} dm^3  \\  \hline 4,03\cdot 10^{7} cm^3  \\  \hline 4,03\cdot 10^{10} mm^3  \\  \hline 4,03\cdot 10^{4} l  \\  \hline 403 hl  \\ \hline \end{array}  \end{array}$