-
<<
>>
G
B
I
$ V =\frac{1}{3} G\cdot h $
$ G = \frac{3 \cdot V}{h} $
$ h = \frac{3 \cdot V}{G} $
$ O = G +M $
$ G = O-M $
$ M = O- G $
$ \text{Rechteckige Pyramide} $
$ \text{Quadratische Pyramide} $
Geometrie-Stereometrie-Pyramide
$V =\frac{1}{3} G\cdot h$
1
2
3
4
$G = \frac{3 \cdot V}{h}$
1
2
$h = \frac{3 \cdot V}{G}$
1
2
3
$O = G +M $
1
2
$G = O-M$
1
2
3
$M = O- G $
1
2
$\text{Rechteckige Pyramide}$
1
2
3
4
5
6
7
8
9
10
11
$\text{Quadratische Pyramide}$
1
2
3
4
5
6
7
8
9
10
11
12
13
Beispiel Nr: 12
$\begin{array}{l}
\text{Gegeben:}\\
\text{Länge der Seite } \qquad a \qquad [m] \\
\text{Körperhöhe } \qquad h \qquad [m] \\
\\ \text{Gesucht:} \\
\text{Diagonale } \qquad d \qquad [m] \\
\text{Seitenkante } \qquad s \qquad [m] \\
\text{Grundfläche} \qquad G \qquad [m^{2}] \\
\text{Mantelfläche} \qquad M \qquad [m^{2}] \\
\text{Volumen} \qquad V \qquad [m^{3}] \\
\\ \text{Quadratische Pyramide}\\ \textbf{Gegeben:} \\ a=1m \qquad h=11m \\ \\ \textbf{Rechnung:} \\
\text{Pythagoras im} \bigtriangleup ABC \qquad
d=\sqrt{a^2+a^2} \\
d=\sqrt{(1m)^2+(1m)^2} =1,41m \\
\text{Pythagoras im} \bigtriangleup LM_1S \qquad
h_1=\sqrt{\left(\dfrac{a}{2}\right)^2+h^2} \\
h_1=\sqrt{\left(\dfrac{1m}{2}\right)^2+(11m)^2} =11m \\
\text{Pythagoras im} \bigtriangleup ALS \qquad
s=\sqrt{\left(\dfrac{d}{2}\right)^2+h^2} \\
s=\sqrt{\left(\dfrac{1,41m}{2}\right)^2+(11m)^2} =11m \\
\text{Mantelfläche} \qquad
M= 4 \cdot \dfrac{1}{2} a \cdot h_1 \\
M= 4 \cdot \dfrac{1}{2} 1m \cdot 11m =22m^{2} \\
\text{Grundfläche} \qquad
G= a^2 \\
G= (1m)^2=1m^{2} \\
\text{Oberfläche} \qquad
O= G+M \\
O= 1m^{2}+22m^{2}=23m^{3} \\
\text{Volumen} \qquad
V= \dfrac{1}{3} a^2 \cdot h \\
V= \dfrac{1}{3} (1m)^2 \cdot 11m =3\frac{2}{3}m^{3} \\
\measuredangle CAS \qquad \tan \eta=\frac{h}{\frac{1}{2}d} \\
\tan \eta=\frac{11m}{\frac{1}{2}1,41m} \\
\eta=86,3 ^{\circ}\\
\measuredangle SM_1L \qquad \tan \epsilon=\frac{h}{\frac{1}{2}a} \\
\tan \epsilon=\frac{11m}{\frac{1}{2}1m} \\
\epsilon=87,4^{\circ} \\
\\\\\\ \small \begin{array}{|l|} \hline a=\\ \hline 1 m \\ \hline 10 dm \\ \hline 100 cm \\ \hline 10^{3} mm \\ \hline 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline h=\\ \hline 11 m \\ \hline 110 dm \\ \hline 1,1\cdot 10^{3} cm \\ \hline 1,1\cdot 10^{4} mm \\ \hline 1,1\cdot 10^{7} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline V=\\ \hline 3\frac{2}{3} m^3 \\ \hline 3666\frac{2}{3} dm^3 \\ \hline 3666666\frac{2}{3} cm^3 \\ \hline 3,67\cdot 10^{9} mm^3 \\ \hline 3666\frac{2}{3} l \\ \hline 36\frac{2}{3} hl \\ \hline \end{array} \small \begin{array}{|l|} \hline d=\\ \hline 1,41 m \\ \hline 14,1 dm \\ \hline 141 cm \\ \hline 1,41\cdot 10^{3} mm \\ \hline 1,41\cdot 10^{6} \mu m \\ \hline \end{array}\\ \small \begin{array}{|l|} \hline h1=\\ \hline 11 m \\ \hline 110 dm \\ \hline 1,1\cdot 10^{3} cm \\ \hline 1,1\cdot 10^{4} mm \\ \hline 1,1\cdot 10^{7} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline h2=\\ \hline 11 m \\ \hline 110 dm \\ \hline 1,1\cdot 10^{3} cm \\ \hline 1,1\cdot 10^{4} mm \\ \hline 1,1\cdot 10^{7} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline s=\\ \hline 11 m \\ \hline 110 dm \\ \hline 1,1\cdot 10^{3} cm \\ \hline 1,1\cdot 10^{4} mm \\ \hline 1,1\cdot 10^{7} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline M=\\ \hline 22 m^2 \\ \hline 2,2\cdot 10^{3} dm^2 \\ \hline 2,2\cdot 10^{5} cm^2 \\ \hline 2,2\cdot 10^{7} mm^2 \\ \hline 0,22 a \\ \hline 0,0022 ha \\ \hline \end{array}\\ \small \begin{array}{|l|} \hline G=\\ \hline 1 m^2 \\ \hline 100 dm^2 \\ \hline 10^{4} cm^2 \\ \hline 10^{6} mm^2 \\ \hline \frac{1}{100} a \\ \hline 0,0001 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline O=\\ \hline 23 m^3 \\ \hline 2,3\cdot 10^{4} dm^3 \\ \hline 2,3\cdot 10^{7} cm^3 \\ \hline 2,3\cdot 10^{10} mm^3 \\ \hline 2,3\cdot 10^{4} l \\ \hline 230 hl \\ \hline \end{array} \end{array}$