-
<<
>>
G
B
I
$ V =\frac{1}{3} G\cdot h $
$ G = \frac{3 \cdot V}{h} $
$ h = \frac{3 \cdot V}{G} $
$ O = G +M $
$ G = O-M $
$ M = O- G $
$ \text{Rechteckige Pyramide} $
$ \text{Quadratische Pyramide} $
Geometrie-Stereometrie-Pyramide
$V =\frac{1}{3} G\cdot h$
1
2
3
4
$G = \frac{3 \cdot V}{h}$
1
2
$h = \frac{3 \cdot V}{G}$
1
2
3
$O = G +M $
1
2
$G = O-M$
1
2
3
$M = O- G $
1
2
$\text{Rechteckige Pyramide}$
1
2
3
4
5
6
7
8
9
10
11
$\text{Quadratische Pyramide}$
1
2
3
4
5
6
7
8
9
10
11
12
13
Beispiel Nr: 13
$\begin{array}{l}
\text{Gegeben:}\\
\text{Länge der Seite } \qquad a \qquad [m] \\
\text{Körperhöhe } \qquad h \qquad [m] \\
\\ \text{Gesucht:} \\
\text{Diagonale } \qquad d \qquad [m] \\
\text{Seitenkante } \qquad s \qquad [m] \\
\text{Grundfläche} \qquad G \qquad [m^{2}] \\
\text{Mantelfläche} \qquad M \qquad [m^{2}] \\
\text{Volumen} \qquad V \qquad [m^{3}] \\
\\ \text{Quadratische Pyramide}\\ \textbf{Gegeben:} \\ a=13m \qquad h=16m \\ \\ \textbf{Rechnung:} \\
\text{Pythagoras im} \bigtriangleup ABC \qquad
d=\sqrt{a^2+a^2} \\
d=\sqrt{(13m)^2+(13m)^2} =18,4m \\
\text{Pythagoras im} \bigtriangleup LM_1S \qquad
h_1=\sqrt{\left(\dfrac{a}{2}\right)^2+h^2} \\
h_1=\sqrt{\left(\dfrac{13m}{2}\right)^2+(16m)^2} =17,3m \\
\text{Pythagoras im} \bigtriangleup ALS \qquad
s=\sqrt{\left(\dfrac{d}{2}\right)^2+h^2} \\
s=\sqrt{\left(\dfrac{18,4m}{2}\right)^2+(16m)^2} =18,5m \\
\text{Mantelfläche} \qquad
M= 4 \cdot \dfrac{1}{2} a \cdot h_1 \\
M= 4 \cdot \dfrac{1}{2} 13m \cdot 17,3m =449m^{2} \\
\text{Grundfläche} \qquad
G= a^2 \\
G= (13m)^2=169m^{2} \\
\text{Oberfläche} \qquad
O= G+M \\
O= 169m^{2}+449m^{2}=618m^{3} \\
\text{Volumen} \qquad
V= \dfrac{1}{3} a^2 \cdot h \\
V= \dfrac{1}{3} (13m)^2 \cdot 16m =901\frac{1}{3}m^{3} \\
\measuredangle CAS \qquad \tan \eta=\frac{h}{\frac{1}{2}d} \\
\tan \eta=\frac{16m}{\frac{1}{2}18,4m} \\
\eta=60,1 ^{\circ}\\
\measuredangle SM_1L \qquad \tan \epsilon=\frac{h}{\frac{1}{2}a} \\
\tan \epsilon=\frac{16m}{\frac{1}{2}13m} \\
\epsilon=67,9^{\circ} \\
\\\\\\ \small \begin{array}{|l|} \hline a=\\ \hline 13 m \\ \hline 130 dm \\ \hline 1,3\cdot 10^{3} cm \\ \hline 1,3\cdot 10^{4} mm \\ \hline 1,3\cdot 10^{7} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline h=\\ \hline 16 m \\ \hline 160 dm \\ \hline 1,6\cdot 10^{3} cm \\ \hline 1,6\cdot 10^{4} mm \\ \hline 1,6\cdot 10^{7} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline V=\\ \hline 901\frac{1}{3} m^3 \\ \hline 901333\frac{1}{3} dm^3 \\ \hline 901333333\frac{1}{3} cm^3 \\ \hline 9,01\cdot 10^{11} mm^3 \\ \hline 901333\frac{1}{3} l \\ \hline 9013\frac{1}{3} hl \\ \hline \end{array} \small \begin{array}{|l|} \hline d=\\ \hline 18,4 m \\ \hline 184 dm \\ \hline 1,84\cdot 10^{3} cm \\ \hline 1,84\cdot 10^{4} mm \\ \hline 1,84\cdot 10^{7} \mu m \\ \hline \end{array}\\ \small \begin{array}{|l|} \hline h1=\\ \hline 17,3 m \\ \hline 173 dm \\ \hline 1,73\cdot 10^{3} cm \\ \hline 1,73\cdot 10^{4} mm \\ \hline 1,73\cdot 10^{7} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline h2=\\ \hline 17,3 m \\ \hline 173 dm \\ \hline 1,73\cdot 10^{3} cm \\ \hline 1,73\cdot 10^{4} mm \\ \hline 1,73\cdot 10^{7} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline s=\\ \hline 18,5 m \\ \hline 185 dm \\ \hline 1,85\cdot 10^{3} cm \\ \hline 1,85\cdot 10^{4} mm \\ \hline 1,85\cdot 10^{7} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline M=\\ \hline 449 m^2 \\ \hline 4,49\cdot 10^{4} dm^2 \\ \hline 4,49\cdot 10^{6} cm^2 \\ \hline 4,49\cdot 10^{8} mm^2 \\ \hline 4,49 a \\ \hline 0,0449 ha \\ \hline \end{array}\\ \small \begin{array}{|l|} \hline G=\\ \hline 169 m^2 \\ \hline 1,69\cdot 10^{4} dm^2 \\ \hline 1,69\cdot 10^{6} cm^2 \\ \hline 1,69\cdot 10^{8} mm^2 \\ \hline 1\frac{69}{100} a \\ \hline 0,0169 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline O=\\ \hline 618 m^3 \\ \hline 6,18\cdot 10^{5} dm^3 \\ \hline 6,18\cdot 10^{8} cm^3 \\ \hline 6,18\cdot 10^{11} mm^3 \\ \hline 6,18\cdot 10^{5} l \\ \hline 6,18\cdot 10^{3} hl \\ \hline \end{array} \end{array}$