-
<<
>>
G
B
I
$ V = r^{2} \cdot \pi \cdot h $
$ r = \sqrt{\frac{ V}{\pi \cdot h}} $
$ h = \frac{ V}{r^{2} \cdot \pi } $
$ O = 2\cdot r\cdot \pi \cdot (r+h) $
$ r = 0,5\cdot (-h+\sqrt{h^{2} +\frac{O}{\pi }}) $
$ h = \frac{0-2\cdot \pi \cdot r^{2} }{ 2\cdot r\cdot \pi } $
Geometrie-Stereometrie-Kreiszylinder
$V = r^{2} \cdot \pi \cdot h$
1
2
$r = \sqrt{\frac{ V}{\pi \cdot h}}$
1
$h = \frac{ V}{r^{2} \cdot \pi }$
1
$O = 2\cdot r\cdot \pi \cdot (r+h)$
1
2
$r = 0,5\cdot (-h+\sqrt{h^{2} +\frac{O}{\pi }})$
1
$h = \frac{0-2\cdot \pi \cdot r^{2} }{ 2\cdot r\cdot \pi }$
1
Beispiel Nr: 01
$\begin{array}{l}
\text{Gegeben:}\\\text{Körperhöhe} \qquad h \qquad [m] \\
\text{Kreiszahl} \qquad \pi \qquad [] \\
\text{Volumen} \qquad V \qquad [m^{3}] \\
\\ \text{Gesucht:} \\\text{Radius} \qquad r \qquad [m] \\
\\ r = \sqrt{\frac{ V}{\pi \cdot h}}\\ \textbf{Gegeben:} \\ h=4m \qquad \pi=3\frac{16}{113} \qquad V=6m^{3} \qquad \\ \\ \textbf{Rechnung:} \\
r = \sqrt{\frac{ V}{\pi \cdot h}} \\
h=4m\\
\pi=3\frac{16}{113}\\
V=6m^{3}\\
r = \sqrt{\frac{ 6m^{3}}{3\frac{16}{113} \cdot 4m}}\\\\r=0,691m
\\\\\\ \small \begin{array}{|l|} \hline h=\\ \hline 4 m \\ \hline 40 dm \\ \hline 400 cm \\ \hline 4\cdot 10^{3} mm \\ \hline 4\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline V=\\ \hline 6 m^3 \\ \hline 6\cdot 10^{3} dm^3 \\ \hline 6\cdot 10^{6} cm^3 \\ \hline 6\cdot 10^{9} mm^3 \\ \hline 6\cdot 10^{3} l \\ \hline 60 hl \\ \hline \end{array} \small \begin{array}{|l|} \hline r=\\ \hline 0,691 m \\ \hline 6,91 dm \\ \hline 69,1 cm \\ \hline 691 mm \\ \hline 6,91\cdot 10^{5} \mu m \\ \hline \end{array} \end{array}$