-
<<
>>
G
B
I
$ A = \frac{a\cdot b}{ 2} $
$ a = \frac{A \cdot 2}{ b} $
$ b = \frac{A \cdot 2}{ a} $
$ c =\sqrt{a^{2} + b^{2} } $
$ a =\sqrt{c^{2} - b^{2} } $
$ b =\sqrt{c^{2} - a^{2} } $
$ h = \sqrt{p\cdot q} $
$ q = \frac{h^{2} }{p} $
$ p = \frac{h^{2} }{q} $
$ a = \sqrt{c\cdot p} $
$ c = \frac{a^{2} }{p} $
$ p = \frac{a^{2} }{c} $
Geometrie-Dreieck-Gleichschenkliges rechtwinkliges Dreieck
$A = \frac{a\cdot b}{ 2}$
1
2
3
4
5
6
7
8
9
10
11
12
$a = \frac{A \cdot 2}{ b}$
1
2
3
4
5
6
7
8
9
10
11
12
$b = \frac{A \cdot 2}{ a}$
1
2
3
4
5
6
7
8
9
10
11
12
$a^{2} + b^{2}=c^{2}$
$c =\sqrt{a^{2} + b^{2} }$
1
2
3
4
5
6
7
8
9
10
11
12
$a =\sqrt{c^{2} - b^{2} }$
1
2
3
4
5
6
7
8
9
10
$b =\sqrt{c^{2} - a^{2} }$
1
2
3
4
5
$h^{2} = p\cdot q$
$h = \sqrt{p\cdot q}$
1
2
3
4
$q = \frac{h^{2} }{p}$
1
2
3
4
$p = \frac{h^{2} }{q}$
1
2
3
$a^{2} = c\cdot p \qquad b^{2} = c\cdot q $
$a = \sqrt{c\cdot p}$
1
2
3
$c = \frac{a^{2} }{p}$
1
2
3
4
$p = \frac{a^{2} }{c}$
1
2
3
4
Beispiel Nr: 01
$\begin{array}{l}
\text{Gegeben:}\\\text{Fläche des Dreiecks} \qquad A \qquad [m^{2}] \\
\text{Kathete} \qquad a \qquad [m] \\
\\ \text{Gesucht:} \\\text{Ankathete zu } \alpha \qquad b \qquad [m] \\
\\ b = \frac{A \cdot 2}{ a}\\ \textbf{Gegeben:} \\ A_{d}=3m^{2} \qquad a=4m \qquad \\ \\ \textbf{Rechnung:} \\
b = \frac{A \cdot 2}{ a} \\
A=3m^{2}\\
a=4m\\
b = \frac{3m^{2} \cdot 2}{ 4m}\\\\b=1\frac{1}{2}m
\\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline 3 m^2 \\ \hline 300 dm^2 \\ \hline 3\cdot 10^{4} cm^2 \\ \hline 3\cdot 10^{6} mm^2 \\ \hline \frac{3}{100} a \\ \hline 0,0003 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline a=\\ \hline 4 m \\ \hline 40 dm \\ \hline 400 cm \\ \hline 4\cdot 10^{3} mm \\ \hline 4\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline b=\\ \hline 1\frac{1}{2} m \\ \hline 15 dm \\ \hline 150 cm \\ \hline 1,5\cdot 10^{3} mm \\ \hline 1,5\cdot 10^{6} \mu m \\ \hline \end{array} \end{array}$