Geometrie-Dreieck-Gleichschenkliges rechtwinkliges Dreieck

$A = \frac{a\cdot b}{ 2}$
1 2 3 4 5 6 7 8 9 10 11 12
$a = \frac{A \cdot 2}{ b}$
1 2 3 4 5 6 7 8 9 10 11 12
$b = \frac{A \cdot 2}{ a}$
1 2 3 4 5 6 7 8 9 10 11 12
$a^{2} + b^{2}=c^{2}$
$c =\sqrt{a^{2} + b^{2} }$
1 2 3 4 5 6 7 8 9 10 11 12
$a =\sqrt{c^{2} - b^{2} }$
1 2 3 4 5 6 7 8 9 10
$b =\sqrt{c^{2} - a^{2} }$
1 2 3 4 5
$h^{2} = p\cdot q$
$h = \sqrt{p\cdot q}$
1 2 3 4
$q = \frac{h^{2} }{p}$
1 2 3 4
$p = \frac{h^{2} }{q}$
1 2 3
$a^{2} = c\cdot p \qquad b^{2} = c\cdot q$
$a = \sqrt{c\cdot p}$
1 2 3
$c = \frac{a^{2} }{p}$
1 2 3 4
$p = \frac{a^{2} }{c}$
1 2 3 4
Beispiel Nr: 07
$\begin{array}{l} \text{Gegeben:}\\\text{Kathete} \qquad b \qquad [m] \\ \text{Fläche des Dreiecks} \qquad A \qquad [m^{2}] \\ \\ \text{Gesucht:} \\\text{Gegenkathete zu} \alpha \qquad a \qquad [m] \\ \\ a = \frac{A \cdot 2}{ b}\\ \textbf{Gegeben:} \\ b=1\frac{2}{3}m \qquad A=\frac{4}{5}m^{2} \qquad \\ \\ \textbf{Rechnung:} \\ a = \frac{A \cdot 2}{ b} \\ b=1\frac{2}{3}m\\ A=\frac{4}{5}m^{2}\\ a = \frac{\frac{4}{5}m^{2} \cdot 2}{ 1\frac{2}{3}m}\\\\a=\frac{24}{25}m \\\\\\ \small \begin{array}{|l|} \hline b=\\ \hline 1\frac{2}{3} m \\ \hline 16\frac{2}{3} dm \\ \hline 166\frac{2}{3} cm \\ \hline 1666\frac{2}{3} mm \\ \hline 1666666\frac{2}{3} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline A=\\ \hline \frac{4}{5} m^2 \\ \hline 80 dm^2 \\ \hline 8\cdot 10^{3} cm^2 \\ \hline 8\cdot 10^{5} mm^2 \\ \hline \frac{1}{125} a \\ \hline 8\cdot 10^{-5} ha \\ \hline \end{array} \small \begin{array}{|l|} \hline a=\\ \hline \frac{24}{25} m \\ \hline 9\frac{3}{5} dm \\ \hline 96 cm \\ \hline 960 mm \\ \hline 9,6\cdot 10^{5} \mu m \\ \hline \end{array} \end{array}$