Geometrie-Dreieck-Gleichschenkliges rechtwinkliges Dreieck

• $A = \frac{a\cdot b}{ 2}$
1 2 3 4 5 6 7 8 9 10 11 12
$a = \frac{A \cdot 2}{ b}$
1 2 3 4 5 6 7 8 9 10 11 12
$b = \frac{A \cdot 2}{ a}$
1 2 3 4 5 6 7 8 9 10 11 12
$a^{2} + b^{2}=c^{2}$
$c =\sqrt{a^{2} + b^{2} }$
1 2 3 4 5 6 7 8 9 10 11 12
$a =\sqrt{c^{2} - b^{2} }$
1 2 3 4 5 6 7 8 9 10
$b =\sqrt{c^{2} - a^{2} }$
1 2 3 4 5
$h^{2} = p\cdot q$
$h = \sqrt{p\cdot q}$
1 2 3 4
$q = \frac{h^{2} }{p}$
1 2 3 4
$p = \frac{h^{2} }{q}$
1 2 3
$a^{2} = c\cdot p \qquad b^{2} = c\cdot q$
$a = \sqrt{c\cdot p}$
1 2 3
$c = \frac{a^{2} }{p}$
1 2 3 4
$p = \frac{a^{2} }{c}$
1 2 3 4

Beispiel Nr: 02
$\text{Gegeben:}\\\text{Höhe} \qquad h \qquad [m] \\ \text{Hypotenusenabschnitt} \qquad q \qquad [m] \\ \\ \text{Gesucht:} \\\text{Hypotenusenabschnitt} \qquad p \qquad [m] \\ \\ p = \frac{h^{2} }{q}\\ \textbf{Gegeben:} \\ h=3m \qquad q=2m \qquad \\ \\ \textbf{Rechnung:} \\ p = \frac{h^{2} }{q} \\ h=3m\\ q=2m\\ p = \frac{(3m)^{2} }{2m}\\\\p=4\frac{1}{2}m \\\\\\ \small \begin{array}{|l|} \hline h=\\ \hline 3 m \\ \hline 30 dm \\ \hline 300 cm \\ \hline 3\cdot 10^{3} mm \\ \hline 3\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline q=\\ \hline 2 m \\ \hline 20 dm \\ \hline 200 cm \\ \hline 2\cdot 10^{3} mm \\ \hline 2\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline p=\\ \hline 4\frac{1}{2} m \\ \hline 45 dm \\ \hline 450 cm \\ \hline 4,5\cdot 10^{3} mm \\ \hline 4,5\cdot 10^{6} \mu m \\ \hline \end{array}$